A Gaussian process state-space model for atmospheric CO2 and sea surface temperature index reconstruction from boron isotope and planktonic δ18O proxies

被引:0
作者
Lee, Taehee [1 ]
Lawrence, Charles E. [2 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] Brown Univ, Providence, RI 02912 USA
来源
PROCEEDINGS OF 2020 10TH INTERNATIONAL CONFERENCE ON CLIMATE INFORMATICS (CI2020) | 2020年
基金
美国国家科学基金会;
关键词
Gaussian process; state-space model; boron isotope; planktonic delta O-18; atmospheric CO2; sea surface temperature; paleoclimatology; CARBON-DIOXIDE CONCENTRATION; ICE CORE; RECORD; CLIMATE;
D O I
10.1145/3429309.3429316
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It often occurs in practice that only a small number of observations are given for reconstructing past climate events in the field of paleoclimatology. State-space models can overcome such scarcity by giving priors to those hidden states to make them correlated to one another. Inferring multiple events simultaneously from various proxies to exploit their mutual dependency is another option. Here we present a Gaussian process state-space model to reconstruct both atmospheric CO2 and sea surface temperature index from boron isotope and planktonic delta O-18 proxies.
引用
收藏
页码:44 / 51
页数:8
相关论文
共 28 条
  • [1] A NEW ROBUST STATISTICAL MODEL FOR RADIOCARBON DATA
    Andres Christen, J.
    Perez E, Sergio
    [J]. RADIOCARBON, 2009, 51 (03) : 1047 - 1059
  • [2] [Anonymous], 1999, INTERPOLATION SPATIA
  • [3] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Chen, Zexun
    Wang, Bo
    Gorban, Alexander N.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08) : 3005 - 3028
  • [4] Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years
    de Garidel-Thoron, T
    Rosenthal, Y
    Bassinot, F
    Beaufort, L
    [J]. NATURE, 2005, 433 (7023) : 294 - 298
  • [5] Doucet A., 2001, SEQUENTIAL MONTE CAR
  • [6] Dyez KA, 2018, PALEOCEANOGR PALEOCL, V33, P1270, DOI [10.1029/2018PA003349, 10.1029/2018pa003349]
  • [7] Eleftheriadis Stefanos, 2017, ADV NEUR IN, P5315
  • [8] Reconstructing Ocean pH with Boron Isotopes in Foraminifera
    Foster, Gavin L.
    Rae, James W. B.
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 44, 2016, 44 : 207 - 237
  • [9] Frigola R, 2014, ADV NEUR IN, V27
  • [10] Classes of kernels for machine learning: A statistics perspective
    Genton, MG
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 299 - 312