A Model for Turbulence Spectra in the Equilibrium Range of the Stable Atmospheric Boundary Layer

被引:12
|
作者
Cheng, Yu [1 ]
Li, Qi [2 ]
Argentini, Stefania [3 ]
Sayde, Chadi [4 ]
Gentine, Pierre [1 ]
机构
[1] Columbia Univ, Dept Earth & Environm Engn, New York, NY 10027 USA
[2] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
[3] CNR, Inst Atmospher Sci & Climate, Rome, Italy
[4] North Carolina State Univ Raleigh, Dept Biol & Agr Engn, Raleigh, NC USA
基金
美国国家科学基金会;
关键词
MONIN-OBUKHOV SIMILARITY; LARGE-EDDY SIMULATIONS; DIRECT NUMERICAL-SIMULATION; STRATIFIED TURBULENCE; SURFACE-LAYER; REYNOLDS-NUMBER; LOCAL ISOTROPY; HEAT-FLUX; DOME C; GLOBAL INTERMITTENCY;
D O I
10.1029/2019JD032191
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Stratification can cause turbulence spectra to deviate from Kolmogorov's isotropic -5/3 power law scaling in the universal equilibrium range at high Reynolds numbers. However, a consensus has not been reached with regard to the exact shape of the spectra. Here we propose a shape of the turbulent kinetic energy and temperature spectra in horizontal wavenumber for the equilibrium range that consists of three regimes at small Froude number: the buoyancy subrange, a transition region, and the isotropic inertial subrange through dimensional analysis and substantial revision of previous theoretical approximation. These spectral regimes are confirmed by various observations in the atmospheric boundary layer. The representation of the transition region in direct numerical simulations will require large-scale separation between the Dougherty-Ozmidov scale and the Kolmogorov scale for strongly stratified turbulence at high Reynolds numbers, which is still challenging computationally. In addition, we suggest that the failure of Monin-Obukhov similarity theory in the very stable atmospheric boundary layer is due to the fact that it does not consider the buoyancy scale that characterizes the transition region.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] LES model intercomparisons for the stable atmospheric boundary layer
    Moene, Arnold F.
    Baas, Peter
    Bosveld, Fred C.
    Basu, Sukanta
    QUALITY AND RELIABILITY OF LARGE-EDDY SIMULATIONS II, 2011, 16 : 141 - +
  • [22] Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer
    Nakanishi, Mikio
    Niino, Hiroshi
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2009, 87 (05) : 895 - 912
  • [23] Modelling isolated wave-turbulence interactions in the stable atmospheric boundary layer
    Edwards, NR
    Mobbs, SD
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1997, 123 (539) : 585 - 604
  • [24] Local dimensionality and inverse persistence analysis of atmospheric turbulence in the stable boundary layer
    Carbone, Francesco
    Alberti, Tommaso
    Faranda, Davide
    Telloni, Daniele
    Consolini, Giuseppe
    Sorriso-Valvo, Luca
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [25] Observations of isolated wave-turbulence interactions in the stable atmospheric boundary layer
    Edwards, NR
    Mobbs, SD
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1997, 123 (539) : 561 - 584
  • [26] Helicity and Turbulence in the Atmospheric Boundary Layer
    N. V. Vazaeva
    O. G. Chkhetiani
    M. V. Kurgansky
    M. A. Kallistratova
    Izvestiya, Atmospheric and Oceanic Physics, 2021, 57 : 29 - 46
  • [27] Helicity and Turbulence in the Atmospheric Boundary Layer
    Vazaeva, N. V.
    Chkhetiani, O. G.
    Kurgansky, M. V.
    Kallistratova, M. A.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2021, 57 (01) : 29 - 46
  • [28] The collapse of turbulence in the atmospheric boundary layer
    van de Wiel, B. J. H.
    Moene, A. F.
    Jonker, H. J. J.
    Clercx, H. J. H.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): INSTABILITY, TRANSITION, GRID TURBULENCE AND JETS, 2011, 318
  • [29] TURBULENCE IN THE ATMOSPHERIC BOUNDARY-LAYER
    STULL, R
    AIR PROGRESS, 1984, 46 (08): : 12 - &
  • [30] TURBULENCE IN ATMOSPHERIC BOUNDARY-LAYER
    SMITH, FB
    SCIENCE PROGRESS, 1975, 62 (245) : 127 - 151