Global solutions for the gravity water waves system in 2d

被引:134
作者
Ionescu, Alexandru D. [1 ]
Pusateri, Fabio [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
LONG-RANGE SCATTERING; WELL-POSEDNESS; FREE-SURFACE; NONLINEAR SCHRODINGER; SOBOLEV SPACES; LARGE TIME; ASYMPTOTICS; EQUATIONS; SINGULARITIES; MOTION;
D O I
10.1007/s00222-014-0521-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the gravity water waves system in the case of a one dimensional interface, for sufficiently smooth and localized initial data, and prove global existence of small solutions. This improves the almost global existence result of Wu (Invent Math 177(1): 45-135, 2009). We also prove that the asymptotic behavior of solutions as time goes to infinity is different from linear, unlike the three dimensional case (Germain et al., Ann Math 175(2):691-754, 2012; Wu, Invent Math 184(1):125-220, 2011). In particular, we identify a suitable nonlinear logarithmic correction and show modified scattering. The solutions we construct in this paper appear to be the first global smooth nontrivial solutions of the gravity water waves system in 2D.
引用
收藏
页码:653 / 804
页数:152
相关论文
共 48 条
[1]   ON THE WATER-WAVE EQUATIONS WITH SURFACE TENSION [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (03) :413-499
[2]  
Alazard T., 2012, ARXIV12120626
[3]  
Alazard T, 2013, ARXIV13054090
[4]   The zero surface tension limit of two-dimensional water waves [J].
Ambrose, DM ;
Masmoudi, N .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1287-1315
[5]  
Beyer K, 1998, MATH METHOD APPL SCI, V21, P1149, DOI 10.1002/(SICI)1099-1476(199808)21:12<1149::AID-MMA990>3.0.CO
[6]  
2-C
[7]   Finite time singularities for the free boundary incompressible Euler equations [J].
Castro, Angel ;
Cordoba, Diego ;
Fefferman, Charles ;
Gancedo, Francisco ;
Gomez-Serrano, Javier .
ANNALS OF MATHEMATICS, 2013, 178 (03) :1061-1134
[8]   Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves [J].
Castro, Angel ;
Cordoba, Diego ;
Fefferman, Charles ;
Gancedo, Francisco ;
Lopez-Fernandez, Maria .
ANNALS OF MATHEMATICS, 2012, 175 (02) :909-948
[9]   Strichartz Estimates for the Water-Wave Problem with Surface Tension [J].
Christianson, Hans ;
Hur, Vera Mikyoung ;
Staffilani, Gigliola .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (12) :2195-2252
[10]  
Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO