Partial regularity for anisotropic functionals of higher order

被引:7
作者
Carozza, Menita
di Napoli, Antonia Passarelli
机构
[1] Univ Sannio, Dipartimento Pe Me Is, I-82100 Benevento, Italy
[2] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
partial regularity; non standard growth; higher order derivatives;
D O I
10.1051/cocv:2007033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a C-k,C-alpha partial regularity result for local minimizers of variational integrals of the type I(u) = integral(Omega) f(D-k u(x))dx, assuming that the integrand f satisfies ( p, q) growth conditions.
引用
收藏
页码:692 / 706
页数:15
相关论文
共 22 条
[1]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[2]  
Bildhauer M, 2001, ANN ACAD SCI FENN-M, V26, P509
[3]  
Bildhauer M., 2003, LECT NOTES MATH, V1818
[4]  
CARRIERO M, 1997, ANN SC NORM SUPER PI, V25, P257
[5]   Domain branching in uniaxial ferromagnets: A scaling law for the minimum energy [J].
Choksi, R ;
Kohn, RV ;
Otto, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (01) :61-79
[6]  
DACOROGNA B, 1989, APPL MATH SCI, V78
[7]   Higher-order quasiconvexity reduces to quasiconvexity [J].
Dal Maso, G ;
Fonseca, I ;
Leoni, G ;
Morini, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 171 (01) :55-81
[8]   Sharp regularity for functionals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (01) :5-55
[9]   Regularity results for minimizers of irregular integrals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
FORUM MATHEMATICUM, 2002, 14 (02) :245-272
[10]   Relaxation of multiple integrals below the growth exponent [J].
Fonseca, I ;
Maly, J .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :309-338