Origami Biosystems: 3D Assembly Methods for Biomedical Applications

被引:74
作者
Quinones, Vladimir A. Bolanos [1 ]
Zhu, Hong [1 ]
Solovev, Alexander A. [1 ]
Mei, Yongfeng [1 ]
Gracias, David H. [2 ]
机构
[1] Fudan Univ, State Key Lab ASIC & Syst, Dept Mat Sci, Shanghai 200433, Peoples R China
[2] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 N Charles St,221 Maryland Hall, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
bio-MEMS; biosensors; drug delivery; minimally invasive surgery; robotics; self-folding; ROLLED-UP NANOTECHNOLOGY; OF-THE-ART; DNA-ORIGAMI; MICROFLUIDIC DEVICES; LABEL-FREE; IN-VITRO; 3-DIMENSIONAL ARCHITECTURES; AUTONOMOUS MOVEMENT; CANCER-CELLS; SHAPE CHANGE;
D O I
10.1002/adbi.201800230
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Conventional assembly of biosystems has relied on bottom-up techniques, such as directed aggregation, or top-down techniques, such as layer-by-layer integration, using advanced lithographic and additive manufacturing processes. However, these methods often fail to mimic the complex three dimensional (3D) microstructure of naturally occurring biomachinery, cells, and organisms regarding assembly throughput, precision, material heterogeneity, and resolution. Pop-up, buckling, and self-folding methods, reminiscent of paper origami, allow the high-throughput assembly of static or reconfigurable biosystems of relevance to biosensors, biomicrofluidics, cell and tissue engineering, drug delivery, and minimally invasive surgery. The universal principle in these assembly methods is the engineering of intrinsic or extrinsic forces to cause local or global shape changes via bending, curving, or folding resulting in the final 3D structure. The forces can result from stresses that are engineered either during or applied externally after synthesis or fabrication. The methods facilitate the high-throughput assembly of biosystems in simultaneously micro or nanopatterned and layered geometries that can be challenging if not impossible to assemble by alternate methods. The authors classify methods based on length scale and biologically relevant applications; examples of significant advances and future challenges are highlighted.
引用
收藏
页数:18
相关论文
共 303 条
[1]   Lab-on-chip technologies:: making a microfluidic network and coupling it into a complete microsystem -: a review [J].
Abgrall, P. ;
Gue, A-M .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) :R15-R49
[2]   Nanoporous and wrinkled electrodes enhance the sensitivity of glucose biosensors [J].
Adams-McGavin, Robert C. ;
Chan, Yuting ;
Gabardo, Christine M. ;
Yang, Jie ;
Skreta, Marta ;
Fung, Barnabas C. ;
Soleymani, Leyla .
ELECTROCHIMICA ACTA, 2017, 242 :1-9
[3]   Lipid-Peptide Vesicle Nanoscale Hybrids for Triggered Drug Release by Mild Hyperthermia in Vitro and in Vivo [J].
Al-Ahmady, Zahraa S. ;
Al-Jamal, Wafa' T. ;
Bossche, Jeroen V. ;
Bui, Tam T. ;
Drake, Alex F. ;
Mason, A. James ;
Kostarelos, Kostas .
ACS NANO, 2012, 6 (10) :9335-9346
[4]   Self-folding microcube antennas for wireless power transfer in dispersive media [J].
Anacleto, Pedro ;
Gultepe, Evin ;
Gomes, Sofia ;
Mendes, Paulo M. ;
Gracias, David H. .
TECHNOLOGY, 2016, 4 (02) :120-129
[5]  
[Anonymous], 2009, Nature's patterns: a tapestry in three parts. Branches
[6]   Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures [J].
Arayanarakool, Rerngchai ;
Meyer, Anne K. ;
Helbig, Linda ;
Sanchez, Samuel ;
Schmidt, Oliver G. .
LAB ON A CHIP, 2015, 15 (14) :2981-2989
[7]   Surface Plasmon Resonance and Bending Loss-Based U-Shaped Plastic Optical Fiber Biosensors [J].
Arcas, Ariadny da S. ;
Dutra, Fabio da S. ;
Allil, Regina C. S. B. ;
Werneck, Marcelo M. .
SENSORS, 2018, 18 (02)
[8]   Engineering Complex Tissues [J].
Atala, Anthony ;
Kasper, F. Kurtis ;
Mikos, Antonios G. .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (160)
[9]   Self-folding micropatterned polymeric containers [J].
Azam, Anum ;
Laflin, Kate E. ;
Jamal, Mustapha ;
Fernandes, Rohan ;
Gracias, David H. .
BIOMEDICAL MICRODEVICES, 2011, 13 (01) :51-58
[10]   In Situ Self-Folding Assembly of a Multi-Walled Hydrogel Tube for Uniaxial Sustained Molecular Release [J].
Baek, Kwanghyun ;
Jeong, Jae Hyun ;
Shkumatov, Artem ;
Bashir, Rashid ;
Kong, Hyunjoon .
ADVANCED MATERIALS, 2013, 25 (39) :5568-+