A new extension of quantum Simpson's and quantum Newton's type inequalities for quantum differentiable convex functions

被引:10
作者
Ali, Muhammad Aamir [1 ]
Budak, Huseyin [2 ]
Zhang, Zhiyue [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
基金
中国国家自然科学基金;
关键词
convex functions; Newton's inequalities; quantum calculus; Simpson's inequalities; MIDPOINT-TYPE INEQUALITIES; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES;
D O I
10.1002/mma.7889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove two identities involving quantum derivatives, quantum integrals, and certain parameters. Using the newly proved identities, we prove new inequalities of Simpson's and Newton's type for quantum differentiable convex functions under certain assumptions. Moreover, we discuss the special cases of our main results and obtain some new and existing Simpson's type inequalities, Newton's type inequalities, midpoint type inequalities, and trapezoidal type inequalities.
引用
收藏
页码:1845 / 1863
页数:19
相关论文
共 43 条
[21]  
Ernst T., 2000, HIST Q CALCULUS NEW
[22]  
Ernst T., 2012, COMPREHENSIVE TREATM
[23]   On quantum hybrid fractional conformable differential and integral operators in a complex domain [J].
Ibrahim, Rabha W. ;
Baleanu, Dumitru .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (01)
[24]   Local fractional Newton's inequalities involving generalized harmonic convex functions [J].
Iftikhar, Sabah ;
Erden, Samet ;
Kumam, Poom ;
Awan, Muhammad Uzair .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[25]  
Jackson F.H., 1910, Q J PURE APPL MATH, V41, P193, DOI DOI 10.1017/S0080456800002751
[26]   On q-Hermite-Hadamard Inequalities for Differentiable Convex Functions [J].
Jhanthanam, Seksan ;
Tariboon, Jessada ;
Ntouyas, Sotiris K. ;
Nonlaopon, Kamsing .
MATHEMATICS, 2019, 7 (07)
[27]  
KAC V., 2001, QUANTUM CALCULUS
[28]   Quantum Hermite-Hadamard inequality by means of a Green function [J].
Khan, Muhammad ;
Mohammad, Noor ;
Nwaeze, Eze R. ;
Chu, Yu-Ming .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[29]  
Kunt M, 2018, RACSAM REV R ACAD A, V112, P969, DOI 10.1007/s13398-017-0402-y
[30]   SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS [J].
Liu, Wenjun ;
Zhuang, Hefeng .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02) :501-522