A new extension of quantum Simpson's and quantum Newton's type inequalities for quantum differentiable convex functions

被引:10
作者
Ali, Muhammad Aamir [1 ]
Budak, Huseyin [2 ]
Zhang, Zhiyue [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
基金
中国国家自然科学基金;
关键词
convex functions; Newton's inequalities; quantum calculus; Simpson's inequalities; MIDPOINT-TYPE INEQUALITIES; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES;
D O I
10.1002/mma.7889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove two identities involving quantum derivatives, quantum integrals, and certain parameters. Using the newly proved identities, we prove new inequalities of Simpson's and Newton's type for quantum differentiable convex functions under certain assumptions. Moreover, we discuss the special cases of our main results and obtain some new and existing Simpson's type inequalities, Newton's type inequalities, midpoint type inequalities, and trapezoidal type inequalities.
引用
收藏
页码:1845 / 1863
页数:19
相关论文
共 43 条
  • [1] Ali MA., 2021, OPEN MATH, V19, P427, DOI DOI 10.1515/math-2021-0015
  • [2] Ali MA., 2021, OPEN MATH, V19, P427, DOI DOI 10.1515/MATH-2021-0015
  • [3] New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Huseyin
    Agarwal, Praveen
    Murtaza, Ghulam
    Chu, Yu-Ming
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [4] Some new Simpson's type inequalities for coordinated convex functions in quantum calculus
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    Yildirim, Huseyin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4515 - 4540
  • [5] Alomari M., 2009, RES REP, V12, P4
  • [6] Alp N, 2020, APPL MATH E-NOTES, V20, P341
  • [7] q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    Kunt, Mehmet
    Iscan, Imdat
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) : 193 - 203
  • [8] SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    ALSALAM, WA
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 : 135 - &
  • [9] Benatti F., 2010, QUANTUM INF COMPUT
  • [10] On q-Hermite-Hadamard inequalities for general convex functions
    Bermudo, S.
    Korus, P.
    Napoles Valdes, J. E.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 364 - 374