Existence solutions for second-order differential inclusions with nonconvex perturbations

被引:18
作者
Azzam-Laouir, Dalila [1 ]
Lounis, Sabrina
Thibault, Lionel
机构
[1] Univ Jijel, Lab Math Pures & Appl, Jijel, Algeria
[2] Univ Montpellier 2, Dept Math, F-34095 Montpellier 5, France
关键词
boundary value problems; differential inclusions; fixed point theorems; mixed semicontinuity; selections;
D O I
10.1080/00036810701460511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article studies the three-point boundary value problems for second-order perturbed differential inclusions of the form u(t) epsilon F(t,u(t),u(t)) + H(t,u(t),u(t)) a.e. on [0, 1]. The existence of solutions is proved under nonconvexity condition for the multifunction H.
引用
收藏
页码:1199 / 1210
页数:12
相关论文
共 12 条
[1]  
Averna D., 1999, REND SEM MAT U PAD, V102, P285
[2]  
Azzam DL, 2002, CONTROL CYBERN, V31, P659
[3]  
Azzam-Laouir D., 2005, J NONLINEAR CONVEX A, V6, P339
[4]  
Azzam-Laouir D., 2003, THESIS
[5]   EXTENSIONS AND SELECTIONS OF MAPS WITH DECOMPOSABLE VALUES [J].
BRESSAN, A ;
COLOMBO, G .
STUDIA MATHEMATICA, 1988, 90 (01) :69-86
[6]  
Castaing C., 1972, B SOC MATH FRANCE, V31, P73, DOI [10.24033/msmf.66, DOI 10.24033/MSMF.66]
[7]  
Castaing C, 1977, LECT NOTES MATH, V580, DOI DOI 10.1007/BFB0087686
[8]   Mixed semicontinuous mappings and their applications to differential inclusions [J].
Fryszkowski, A ;
Górniewicz, L .
SET-VALUED ANALYSIS, 2000, 8 (03) :203-217
[9]   CONTINUOUS-SELECTIONS FOR A CLASS OF NON-CONVEX MULTIVALUED MAPS [J].
FRYSZKOWSKI, A .
STUDIA MATHEMATICA, 1983, 76 (02) :163-174
[10]  
Olech C., 1975, B UNIONE MAT ITAL, V4, P189