Arithmetic properties of partitions with even parts distinct

被引:84
作者
Andrews, George E. [1 ]
Hirschhorn, Michael D. [2 ]
Sellers, James A. [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Congruence; Partition; Distinct even parts; Generating function; Lebesgue identity;
D O I
10.1007/s11139-009-9158-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider the function ped(n), the number of partitions of an integer n wherein the even parts are distinct (and the odd parts are unrestricted). Our goal is to consider this function from an arithmetical point of view in the spirit of Ramanujan's congruences for the unrestricted partition function p(n). We prove a number of results for ped(n) including the following: For all n >= 0, ped(9n + 4) 0 (mod 4) and ped(9n + 7) 0 (mod 12). Indeed, we compute appropriate generating functions from which we deduce these congruences and find, in particular, the surprising result that Sigma(n >= 0)ped(9n + 7)q(n) = 12(q(2);q(2))(infinity)(4)(q(3);q(3))(infinity)(6)(q(4);q(4))(infinity)/(q;q)(infinity)(11). We also show that ped(n) is divisible by 6 at least 1/6 of the time.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 10 条
[1]   Partition identities involving gaps and weights [J].
Alladi, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) :5001-5019
[2]  
Andrews G.E., PARTITIONS DISTINCT
[3]  
Andrews G.E., 1999, Encycl. Math. Appl., V71
[4]   Euler's "De Partitio Numerorum" [J].
Andrews, George E. .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (04) :561-573
[5]  
Dandurand B., 2010, RAMANUJAN J IN PRESS
[6]  
Gordon B., 1997, RAMANUJAN J, V1, P25, DOI DOI 10.1023/A:1009711020492
[7]   Defect zero p-blocks for finite simple groups [J].
Granville, A ;
Ono, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :331-347
[8]  
Lebesgue, 1840, J MATH PURE APPL, V5, P42
[9]  
Patkowski A., 2010, SOME PARTIT IN PRESS
[10]   Arithmetic of l-regular partition functions [J].
Penniston, David .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) :295-302