A temperature compensated biaxial eFM accelerometer in Epi-seal process

被引:6
作者
Shin, Seungyong [1 ]
Kwon, Hyun-Keun [3 ]
Vukasin, Gabrielle D. [4 ]
Kenny, Thomas W. [5 ]
Ayazi, Farrokh [2 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Microsyst, Atlanta, GA 30332 USA
[3] Stanford Univ, Stanford, CA 94305 USA
[4] Stanford Univ, Mech Engn, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Dual axis resonant accelerometer; Wide bandwidth; Micro-gravity accelerometer; Temperature compensation; Epi-seal; RESONANT MEMS ACCELEROMETER; QUALITY FACTOR; STABILITY;
D O I
10.1016/j.sna.2021.112860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on the implementation of a vacuum-encapsulated bi-axial resonant accelerometer utilizing the electrostatic frequency modulation (eFM) technique. A novel flexure structure is designed to enable fully-decoupled in-plane displacement of the proof-mass to minimize cross-axis sensitivity. A differential readout scheme leveraging pairs of high quality factor (>12k) free-free beam resonators mitigates the first-order nonlinearities due to temperature effects and unwanted response to proof-mass spurious modes. The fabricated device measures a scale factor of 45.8 Hz/g with negligible cross-axis sensitivity (<2 %). Furthermore, the smooth characteristics of temperature coefficients of frequency (TCf) of the resonators enable an accurate temperature sensor using the common-mode frequency of the resonator pair. Applying a temperature compensation scheme utilizing the common-mode frequency output and pre-characterized TCfs, the accelerometer demonstrates superior performance measuring a VRW of 5.8 mu g/root Hz and BI of 5.7 mu g with a scale factor stability of 0.38 % and zero-g-output variation of 8.3 mg over temperature range from -20 degrees C to 80 degrees C. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 42 条
  • [1] [Anonymous], 2018, IEEE ION POS LOC NAV IEEE ION POS LOC NAV, P261
  • [2] Ayazi F., 2011, TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, P2805, DOI 10.1109/TRANSDUCERS.2011.5969885
  • [3] High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology
    Ayazi, F
    Najafi, K
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2000, 9 (03) : 288 - 294
  • [4] Compact biaxial micromachined resonant accelerometer
    Caspani, Alessandro
    Comi, Claudia
    Corigliano, Alberto
    Langfelder, Giacomo
    Tocchio, Alessandro
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (10)
  • [5] Cui J, 2020, PROC IEEE MICR ELECT, P791, DOI [10.1109/MEMS46641.2020.9056157, 10.1109/mems46641.2020.9056157]
  • [6] Daruwalla A, 2018, IEEE POSITION LOCAT, P283, DOI 10.1109/PLANS.2018.8373392
  • [7] Exploiting nonlinear amplitude-frequency dependence for temperature compensation in silicon micromechanical resonators
    Defoort, M.
    Taheri-Tehrani, P.
    Horsley, D. A.
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (15)
  • [8] Du JH, 2017, INT CONF NANO MICRO, P214, DOI 10.1109/NEMS.2017.8017009
  • [9] Gupta P., 2018, 2018 HILT HEAD WORKS, P30
  • [10] Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals
    Gupta, Pranav
    Moghimi, Mohammad J.
    Jeong, Yaesuk
    Gupta, Divya
    Inan, Omer T.
    Ayazi, Farrokh
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)