Variational quantum algorithms for nonlinear problems

被引:194
|
作者
Lubasch, Michael [1 ]
Joo, Jaewoo [1 ]
Moinier, Pierre [2 ]
Kiffner, Martin [1 ,3 ]
Jaksch, Dieter [1 ,3 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] BAE Syst, Computat Engn, Buckingham House,FPC 267,POB 5, Bristol BS34 7QW, Avon, England
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
MATRIX PRODUCT STATES; APPROXIMATION; SYSTEMS; VORTEX;
D O I
10.1103/PhysRevA.101.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficiently and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schrodinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Agreeable solutions of variational problems
    Zaslavski, Alexander J.
    PORTUGALIAE MATHEMATICA, 2011, 68 (03) : 239 - 257
  • [42] On mixed variational relation problems
    Balaj, Mircea
    Luc, Dinh The
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (09) : 2712 - 2722
  • [43] Theory of variational quantum simulation
    Yuan, Xiao
    Endo, Suguru
    Zhao, Qi
    Li, Ying
    Benjamin, Simon C.
    QUANTUM, 2019, 3
  • [44] Composite Iterative Algorithms for Variational Inequality and Fixed Point Problems in Real Smooth and Uniformly Convex Banach Spaces
    Ceng, Lu-Chuan
    Wen, Ching-Feng
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [45] Strong Convergence Analysis of Iterative Algorithms for Solving Variational Inclusions and Fixed-Point Problems of Pseudocontractive Operators
    Yao, Zhangsong
    Wu, Yan-Kuen
    Wen, Ching-Feng
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [46] System of generalized nonlinear variational-like inclusions and fixed point problems: graph convergence with an application
    Balooee, Javad
    Postolache, Mihai
    Yao, Yonghong
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (04) : 1343 - 1384
  • [47] Variational Principle for Optimal Quantum Controls in Quantum Metrology
    Yang, Jing
    Pang, Shengshi
    Chen, Zekai
    Jordan, Andrew N.
    del Campo, Adolfo
    PHYSICAL REVIEW LETTERS, 2022, 128 (16)
  • [48] Minimization of equilibrium problems, variational inequality problems and fixed point problems
    Yao, Yonghong
    Liou, Yeong-Cheng
    Kang, Shin Min
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 48 (04) : 643 - 656
  • [49] NLEVP: A Collection of Nonlinear Eigenvalue Problems
    Betcke, Timo
    Higham, Nicholas J.
    Mehrmann, Volker
    Schroeder, Christian
    Tisseur, Francoise
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02):
  • [50] Multiscale quantum algorithms for quantum chemistry
    Ma, Huan
    Liu, Jie
    Shang, Honghui
    Fan, Yi
    Li, Zhenyu
    Yang, Jinlong
    CHEMICAL SCIENCE, 2023, 14 (12) : 3190 - 3205