Coupled Models and Parallel Simulations for Three-Dimensional Full-Stokes Ice Sheet Modeling
被引:20
作者:
Zhang, Huai
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Carolina, Dept Math, Columbia, SC 29208 USA
Chinese Acad Sci, Lab Computat Geodynam, Grad Univ, Beijing 100049, Peoples R ChinaUniv S Carolina, Dept Math, Columbia, SC 29208 USA
Zhang, Huai
[1
,4
]
Ju, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Carolina, Dept Math, Columbia, SC 29208 USAUniv S Carolina, Dept Math, Columbia, SC 29208 USA
Ju, Lili
[1
]
Gunzburger, Max
论文数: 0引用数: 0
h-index: 0
机构:
Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USAUniv S Carolina, Dept Math, Columbia, SC 29208 USA
Gunzburger, Max
[2
]
Ringler, Todd
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USAUniv S Carolina, Dept Math, Columbia, SC 29208 USA
Ringler, Todd
[3
]
Price, Stephen
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USAUniv S Carolina, Dept Math, Columbia, SC 29208 USA
Price, Stephen
[3
]
机构:
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Chinese Acad Sci, Lab Computat Geodynam, Grad Univ, Beijing 100049, Peoples R China
A three-dimensional full-Stokes computational model is considered for determining the dynamics, temperature, and thickness of ice sheets. The governing thermo-mechanical equations consist of the three-dimensional full-Stokes system with nonlinear rheology for the momentum, an advective-diffusion energy equation for temperature evolution, and a mass conservation equation for ice-thickness changes. Here, we discuss the variable resolution meshes, the finite element discretizations, and the parallel algorithms employed by the model components. The solvers are integrated through a well-designed coupler for the exchange of parametric data between components. The discretization utilizes high-quality variable-resolution centroidal Voronoi Delaunay triangulation meshing and existing parallel solvers. We demonstrate the gridding technology, discretization schemes, and the efficiency and scalability of the parallel solvers through computational experiments using both simplified geometries arising from benchmark test problems and a realistic Greenland ice sheet geometry.