On the Newton method for solving fuzzy optimization problems

被引:40
作者
Chalco-Cano, Y. [1 ]
Silva, G. N. [2 ]
Rufian-Lizana, A. [1 ,3 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] UNESP, Inst Biociencias Letras & Ciencias Exatas, Dept Matemat Aplicada, Sao Jose Do Rio Preto, SP, Brazil
[3] Univ Seville, Dept Estadist & IO, Seville, Spain
基金
巴西圣保罗研究基金会;
关键词
Fuzzy optimization; Generalized Hukuhara differentiability; Newton method; MATHEMATICAL-PROGRAMMING PROBLEMS; TUCKER OPTIMALITY CONDITIONS; VALUED OBJECTIVE FUNCTIONS; DIFFERENTIAL-EQUATIONS; MAPPINGS; CONVEX; INTERVAL; INEQUALITY;
D O I
10.1016/j.fss.2015.02.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article we consider optimization problems where the objectives are fuzzy functions (fuzzy-valued functions). For this class of fuzzy optimization problems we discuss the Newton method to find a non-dominated solution. For this purpose, we use the generalized Hukuhara differentiability notion, which is the most general concept of existing differentiability for fuzzy functions. This work improves and corrects the Newton method previously proposed in the literature. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 69
页数:10
相关论文
共 35 条
[1]   Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :581-599
[2]  
Bede B., 2010, COMMUNICATIONS MATH, V9, P22
[3]   Generalized differentiability of fuzzy-valued functions [J].
Bede, Barnabas ;
Stefanini, Luciano .
FUZZY SETS AND SYSTEMS, 2013, 230 :119-141
[4]   A note on generalized convexity for fuzzy mappings through a linear ordering [J].
Chalco-Cano, Y. ;
Rufian-Lizana, A. ;
Roman-Flores, H. ;
Osuna-Gomez, R. .
FUZZY SETS AND SYSTEMS, 2013, 231 :70-83
[5]   Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative [J].
Chalco-Cano, Y. ;
Lodwick, W. A. ;
Rufian-Lizana, A. .
FUZZY OPTIMIZATION AND DECISION MAKING, 2013, 12 (03) :305-322
[6]   Calculus for interval-valued functions using generalized Hukuhara derivative and applications [J].
Chalco-Cano, Y. ;
Rufian-Lizana, A. ;
Roman-Flores, H. ;
Jimenez-Gamero, M. D. .
FUZZY SETS AND SYSTEMS, 2013, 219 :49-67
[7]   Generalized derivative and π-derivative for set-valued functions [J].
Chalco-Cano, Y. ;
Roman-Flores, H. ;
Jimenez-Gamero, M. D. .
INFORMATION SCIENCES, 2011, 181 (11) :2177-2188
[8]  
Chalco-Cano Y., 2013, P JOIN C IFSA NAFIPS
[9]  
Delgado M., 1994, Fuzzy optimization: Recent advances
[10]  
Hukuhara M., 1967, Func. Ekvacioj., P205