Enhanced Adaptive Locality Preserving Projections for Face Recognition

被引:2
|
作者
Fan, Jun [1 ,2 ]
Ye, Qiaolin [1 ,3 ]
Ye, Ning [1 ]
机构
[1] Nanjing Forestry Univ, Nanjing 210094, Jiangsu, Peoples R China
[2] Jiangsu Coll Engn & Technol, Nantong 226007, Peoples R China
[3] Nanjing Univ Sci & Technol, Jiangsu Key Lab Image & Video Understanding Socia, Nanjing 210094, Jiangsu, Peoples R China
来源
PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR) | 2017年
关键词
EFFICIENT;
D O I
10.1109/ACPR.2017.123
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the graph-based manifold learning method for face recognition. The proposed method is called enhanced adaptive Locality Preserving Projections. The EALPP integrates four properties: (i) introduction of data label information and parameterless computation of affinity matrix, (ii) QR-decomposition for acceleration of the eigenvector computation, (iii) matrix exponential for solving the problem of singular matrix and (iv) processing of uncorrelated vector of projection matrix. EALPP has been integrated two techniques: Maximum Margin Criterion (MMC) and Locality Preserving Projections (LPP). Face recognition test on four public face databases (ORL, Yale, AR and UMIST) and experimental results demonstrate the effectiveness of EALPP.
引用
收藏
页码:594 / 598
页数:5
相关论文
共 50 条
  • [21] Iris Recognition Approach for Preserving Privacy in Cloud Computing
    Nalini, M. K.
    Preetha, S.
    Samanta, Sumedha
    Tejaswini, V
    Yashasvi, M.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (17) : 33 - 50
  • [22] Towards collaborative feature extraction for face recognition
    Rodriguez, Eduardo
    Nikolaidis, Konstantinos
    Mu, Tingting
    Ralph, Jason F.
    Goulermas, John Y.
    NATURAL COMPUTING, 2012, 11 (03) : 395 - 404
  • [23] Graph Maximum Margin Criterion for Face Recognition
    Lu, Gui-Fu
    Wang, Yong
    Zou, Jian
    NEURAL PROCESSING LETTERS, 2016, 44 (02) : 387 - 405
  • [24] Masked face recognition using domain adaptation
    Huang, Yu-Chieh
    Rahardjo, David Akas Bedjo
    Shiue, Ren-Hau
    Chen, Homer H.
    PATTERN RECOGNITION, 2024, 153
  • [25] Research on the Privacy Security of Face Recognition Technology
    Pang, Luning
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [26] A trust based adaptive privacy preserving authentication scheme for VANETs
    Zhang, Song
    Liu, Yanbing
    Xiao, Yunpeng
    He, Rui
    VEHICULAR COMMUNICATIONS, 2022, 37
  • [27] A fast classification scheme and its application to face recognition
    Ma, Xiao-hu
    Tan, Yan-qi
    Zheng, Gang-min
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2013, 14 (07): : 561 - 572
  • [28] Adaptive edge-preserving image denoising using wavelet transforms
    da Silva, Ricardo Dutra
    Minetto, Rodrigo
    Schwartz, William Robson
    Pedrini, Helio
    PATTERN ANALYSIS AND APPLICATIONS, 2013, 16 (04) : 567 - 580
  • [29] Uncorrelated regularized local Fisher discriminant analysis for face recognition
    Wang, Zhan
    Ruan, Qiuqi
    An, Gaoyun
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (04)
  • [30] PrivFace: Fast Privacy-Preserving Face Authentication With Revocable and Reusable Biometric Credentials
    Lei, Jing
    Pei, Qingqi
    Wang, Yao
    Sun, Wenhai
    Liu, Xuefeng
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (05) : 3101 - 3112