Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates

被引:109
作者
Culver, TB
Hallisey, SP
Sahoo, D
Deitsch, JJ
Smith, JA
机构
[1] Department of Civil Engineering, University of Virginia, Charlottesville
关键词
D O I
10.1021/es9600946
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Simulation models for the fate and transport of groundwater contaminants are important tools for testing our understanding of transport phenomena at long-term contaminated sites and for designing remedial action plans. A finite difference formulation for contaminant transport including a distribution of contaminant mass-transfer rates between the water and soil is developed. Optimal model simulations using both log-normal and gamma distributions of mass transfer rates are compared to the two-site equilibrium/kinetic model. In all cases, optimal sorption parameters were determined by best fit to laboratory data. For desorption of trichloroethene from long-term contaminated soils, the distributed mass-transfer rate model provided significantly improved simulations of aqueous concentrations, as compared to the two-site model, for both batch and soil column experiments. However, use of an apparent partition coefficient demonstrated that the performance of the two-site model was very sensitive to the value of the partition coefficient, while the performances of the distributed models were robust over a wide range of partition coefficients. Desorption studies in continuous-flow stirred tank reactors with laboratory-contaminated soils demonstrated that as the length of the contamination period increases, the simulation capability of the two-site model decreases.
引用
收藏
页码:1581 / 1588
页数:8
相关论文
共 35 条
[1]   LONG-TERM SORPTION OF HALOGENATED ORGANIC-CHEMICALS BY AQUIFER MATERIAL .2. INTRAPARTICLE DIFFUSION [J].
BALL, WP ;
ROBERTS, PV .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (07) :1237-1249
[2]   ANALYSES OF ADSORPTION-KINETICS USING A STIRRED-FLOW CHAMBER .1. THEORY AND CRITICAL TESTS [J].
BAR-TAL, A ;
SPARKS, DL ;
PESEK, JD ;
FEIGENBAUM, S .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1990, 54 (05) :1273-1278
[3]   NONEQUILIBRIUM TRANSPORT OF ORGANIC-CHEMICALS - THE IMPACT OF PORE-WATER VELOCITY [J].
BRUSSEAU, ML .
JOURNAL OF CONTAMINANT HYDROLOGY, 1992, 9 (04) :353-368
[4]   MODELING THE TRANSPORT OF SOLUTES INFLUENCED BY MULTIPROCESS NONEQUILIBRIUM [J].
BRUSSEAU, ML ;
JESSUP, RE ;
RAO, PSC .
WATER RESOURCES RESEARCH, 1989, 25 (09) :1971-1988
[5]   SORPTION NONIDEALITY DURING ORGANIC CONTAMINANT TRANSPORT IN POROUS-MEDIA [J].
BRUSSEAU, ML ;
RAO, PSC .
CRITICAL REVIEWS IN ENVIRONMENTAL CONTROL, 1989, 19 (01) :33-99
[6]   PROBABILITY LAWS FOR PORE-SIZE DISTRIBUTIONS [J].
BRUTSAERT, W .
SOIL SCIENCE, 1966, 101 (02) :85-+
[7]  
CHEN W, 1994, THESIS CORNELL U
[8]   SOLUTE TRANSPORT IN POROUS-MEDIA WITH SORPTION-SITE HETEROGENEITY [J].
CHEN, WL ;
WAGENET, RJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (11) :2725-2734
[9]  
Cherry J. A., 1984, GROUNDWATER CONTAMIN, P46
[10]   PARTITION EQUILIBRIA OF NON-IONIC ORGANIC-COMPOUNDS BETWEEN SOIL ORGANIC-MATTER AND WATER [J].
CHIOU, CT ;
PORTER, PE ;
SCHMEDDING, DW .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1983, 17 (04) :227-231