Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays

被引:139
|
作者
Liu, XQ [1 ]
Sidiropoulos, ND [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Cramer-Rao bound; least squares method; matrix decomposition; multidimensional signal processing;
D O I
10.1109/78.942635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unlike low-rank matrix decomposition, which is generically nonunique for rank greater than one, low-rank three- and higher dimensional array decomposition is unique, provided that the array rank is lower than a certain bound, and the correct number of components (equal to array rank) is sought in the decomposition. Parallel factor (PARAFAC) analysis is a common name for low-rank decomposition of higher dimensional arrays. This paper develops Cramer-Rao Bound (CRB) results for low-rank decomposition of three- and four-dimensional (3-D and 4-D) arrays, illustrates the behavior of the resulting bounds, and compares alternating least squares algorithms that are commonly used to compute such decompositions with the respective CRBs. Simple-to-check necessary conditions for a unique low-rank decomposition are also provided.
引用
收藏
页码:2074 / 2086
页数:13
相关论文
共 50 条
  • [1] Cramer-Rao Bounds for Holographic Positioning
    D'Amico, Antonio A. A.
    Torres, Andrea de Jesus
    Sanguinetti, Luca
    Win, Moe
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 5518 - 5532
  • [2] Computing Constrained Cramer-Rao Bounds
    Tune, Paul
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5543 - 5548
  • [3] Cramer-Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters
    Shaghaghi, Mahdi
    Vorobyov, Sergiy A.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (09) : 1497 - 1501
  • [4] Covariance, subspace, and intrinsic Cramer-Rao bounds
    Smith, ST
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (05) : 1610 - 1630
  • [5] Cramer-Rao Bounds for a Laser Doppler Anemometer
    Zhang, Lu
    Kulon, Janusz
    2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [6] Cramer-Rao Bounds for Compressive Frequency Estimation
    Chen, Xushan
    Zhang, Xiongwei
    Yang, Jibin
    Sun, Meng
    Yang, Weiwei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (03): : 874 - 877
  • [7] GNSS-R Altimeter Performance: Analysis of Cramer-Rao Lower Bounds
    D'Addio, Salvatore
    Martin-Neira, Manuel
    Martin, Francisco
    Park, Hyuk
    Camps, Adriano
    2012 WORKSHOP ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY (GNSS+R), 2012,
  • [8] Deterministic asymptotic Cramer-Rao bound for the multidimensional harmonic model
    Boyer, Remy
    SIGNAL PROCESSING, 2008, 88 (12) : 2869 - 2877
  • [9] Cramer-Rao Bounds and Resolution Benefits of Sparse Arrays in Measurement-Dependent SNR Regimes
    Shahsavari, Sina
    Pal, Piya
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 601 - 605
  • [10] Maximum likelihood estimators and Cramer-Rao bounds in source separation
    Harroy, F
    Lacoume, JL
    SIGNAL PROCESSING, 1996, 55 (02) : 167 - 177