A generalized extension theorem for linear codes

被引:5
作者
Maruta, Tatsuya [1 ]
Yoshida, Yuri [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
Linear codes; Extension; Projective geometry; EXTENDABILITY;
D O I
10.1007/s10623-011-9497-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that an [n, k, d] (q) code C with gcd(d, q) = 1 is extendable if Sigma(i not equal 0,d) Lambda(i) < (q - 1)(q)(k-2), where A (i) denotes the number of codewords of C with weight i. This is a generalization of extension theorems for linear codes by Hill and Lizak (Proceedings of the IEEE International Symposium on Information Theory, Whistler, Canada, 1995) and by Landjev and Rousseva (Probl. Inform. Transm. 42: 319-329, 2006).
引用
收藏
页码:121 / 130
页数:10
相关论文
共 15 条
  • [1] Batten L. M., 1997, Combinatorics of finite geometries, V2nd
  • [2] Bierbrauer J., 2005, INTRO CODING THEORY
  • [3] Hill R, 1995, PROCEEDINGS 1995 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, P345, DOI 10.1109/ISIT.1995.550332
  • [4] An extension theorem for linear codes
    Hill, R
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 1999, 17 (1-3) : 151 - 157
  • [5] Hill R, 1999, CH CRC RES NOTES MAT, V403, P127
  • [6] Hill R., 1992, INST MATH C, P75
  • [7] Hirschfeld J.W.P, 1998, PROJECTIVE GEOMETRIE
  • [8] Kanazawa R, 2011, ELECTRON J COMB, V18
  • [9] An Extension Theorem for Arcs and Linear Codes
    Landjev, I.
    Rousseva, A.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2006, 42 (04) : 319 - 329
  • [10] Extendability of ternary linear codes
    Maruta, T
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2005, 35 (02) : 175 - 190