Free particle wave function in light of the minimum-length deformed quantum mechanics and some of its phenomenological implications

被引:33
作者
Berger, Micheal S. [1 ]
Maziashvili, Michael [2 ,3 ]
机构
[1] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[2] Andronikashvili Inst Phys, GE-0177 Tbilisi, Georgia
[3] Ilia State Univ, Ctr Elementary Particle Phys, ITP, GE-0162 Tbilisi, Georgia
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; PRIMORDIAL BLACK-HOLES; GRAVITY; ENTROPY; INFLATION; SPACETIME; REMNANTS;
D O I
10.1103/PhysRevD.84.044043
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
At a fundamental level the notion of particle (quantum) comes from quantum field theory. From this point of view we estimate corrections to the free particle wave function due to minimum-length deformed quantum mechanics to the first order in the deformation parameter. Namely, in the matrix element < 0 vertical bar Phi(t, x)vertical bar p > that in the standard case sets the free particle wave function alpha exp(i[px - epsilon(p)t]) there appear three kinds of corrections when the field operator is calculated by using the minimum-length deformed quantum mechanics. Starting from the standard (not modified at the classical level) Lagrangian, after the field quantization we get a modified dispersion relation, and besides that we find that the particle's wave function contains a small fraction of an antiparticle wave function and the backscattered wave. The result leads to interesting implications for black hole physics.
引用
收藏
页数:8
相关论文
共 46 条
  • [1] The generalized uncertainty principle and black hole remnants
    Adler, RJ
    Chen, PS
    Santiago, DI
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (12) : 2101 - 2108
  • [2] On gravity and the uncertainty principle
    Adler, RJ
    Santiago, DI
    [J]. MODERN PHYSICS LETTERS A, 1999, 14 (20) : 1371 - 1381
  • [3] Discreteness of space from the generalized uncertainty principle
    Ali, Ahmed Farag
    Das, Saurya
    Vagenas, Elias C.
    [J]. PHYSICS LETTERS B, 2009, 678 (05) : 497 - 499
  • [4] CAN SPACETIME BE PROBED BELOW THE STRING SIZE
    AMATI, D
    CIAFALONI, M
    VENEZIANO, G
    [J]. PHYSICS LETTERS B, 1989, 216 (1-2) : 41 - 47
  • [5] [Anonymous], 2010, Quantum field theory in a nutshell
  • [6] Quantum geometry and black hole entropy
    Ashtekar, A
    Baez, J
    Corichi, A
    Krasnov, K
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (05) : 904 - 907
  • [7] Quantum mechanics and the generalized uncertainty principle
    Bang, Jang Young
    Berger, Micheal S.
    [J]. PHYSICAL REVIEW D, 2006, 74 (12):
  • [8] Wave packets in discrete quantum phase space
    Bang, Jang Young
    Berger, Micheal S.
    [J]. PHYSICAL REVIEW A, 2009, 80 (02):
  • [9] Birrell Davies, 1982, Quantum Fields in Curved Space
  • [10] Minimal length uncertainty relation and the hydrogen atom
    Brau, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44): : 7691 - 7696