Partial Gabor frames and dual frames

被引:1
作者
Tian, Yu [1 ]
Jia, Hui-Fang [2 ]
He, Guo-Liang [1 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Shanxi Univ, Sch Math Sci, Taiyuan 030001, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Gabor system; partial Gabor system; frame; Gabor frame; Gabor dual frame; WEYL-HEISENBERG FRAMES; SUBSPACES; TRANSFORM; WAVELET; BASES;
D O I
10.1142/S0219691321500351
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The theory of Gabor frames has been extensively investigated. This paper addresses partial Gabor systems. We introduce the concepts of partial Gabor system, frame and dual frame. We present some conditions for a partial Gabor system to be a partial Gabor frame, and using these conditions, we characterize partial dual frames. We also give some examples. It is noteworthy that the density theorem does not hold for general partial Gabor systems.
引用
收藏
页数:17
相关论文
共 41 条
[11]   RATIONAL TIME-FREQUENCY GABOR FRAMES ASSOCIATED WITH PERIODIC SUBSETS OF THE REAL LINE [J].
Gabardo, Jean-Pierre ;
Li, Yun-Zhang .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2014, 12 (02)
[12]   Lattice tiling and density conditions for subspace Gabor frames [J].
Gabardo, Jean-Pierre ;
Han, Deguang ;
Li, Yun-Zhang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (07) :1170-1189
[13]   Density results for Gabor systems associated with periodic subsets of the real line [J].
Gabardo, Jean-Pierre ;
Li, Yun-Zhang .
JOURNAL OF APPROXIMATION THEORY, 2009, 157 (02) :172-192
[14]   Weighted irregular Gabor tight frames and dual systems using windows in the Schwartz class [J].
Gabardo, Jean-Pierre .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (03) :635-672
[15]   The uniqueness of the dual of Weyl-Heisenberg subspace frames [J].
Gabardo, JP ;
Han, DG .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (02) :226-240
[16]   Balian-Low phenomenon for subspace Gabor frames [J].
Gabardo, JP ;
Han, DG .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) :3362-3378
[17]   Subspace Weyl-Heisenberg frames [J].
Gabardo, JP ;
Han, DG .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (04) :419-433
[18]  
Gabor D., 1946, J I ELECT ENG LOND, V93, P429, DOI DOI 10.1049/JI-3-2.1946.0074
[19]  
Grchenig K., 2000, FDN TIME FREQUENCY A
[20]   The existence of tight Gabor duals for Gabor frames and subspace Gabor frames [J].
Han, Deguang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (01) :129-148