Nonlinear Maps Preserving the Mixed Product [A ○ B, C]* on Von Neumann Algebras

被引:19
作者
Li, Changjing [1 ]
Zhao, Yuanyuan [1 ]
Zhao, Fangfang [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Jordan *-product; isomorphism; von Neumann algebras; 2-LOCAL LIE ISOMORPHISMS; TRIPLE ASTERISK-PRODUCT; MAPPINGS; RINGS;
D O I
10.2298/FIL2108775L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be two von Neumann algebras. For A, B is an element of A, define by [A, B](*) = AB - BA* and A circle B = AB + BA* the new products of A and B. Suppose that a bijective map Phi : A -> B satisfies Phi([A circle B, C](*)) = [Phi(A) circle Phi(B), Phi(C)](*) for all A, B, C is an element of A. In this paper, it is proved that if A and B be two von Neumann algebras with no central abelian projections, then the map Phi(I)Phi is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism, where Phi(I) is a self-adjoint central element in B with Phi(I)(2) = I. If A and B are two factor von Neumann algebras, then Phi is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.
引用
收藏
页码:2775 / 2781
页数:7
相关论文
共 25 条
[1]   Maps preserving products XY-YX* on von Neumann algebras [J].
Bai, Zhaofang ;
Du, Shuanping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) :103-109
[2]  
Bresar M, 2000, PUBL MATH-DEBRECEN, V57, P121
[3]   Maps preserving product XY-YX* on factor von Neumann algebras [J].
Cui, Jianlian ;
Li, Chi-Kwong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :833-842
[4]   Nonlinear maps preserving Jordan *-products [J].
Dai, Liqing ;
Lu, Fangyan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :180-188
[5]   Nonlinear maps preserving Jordan triple η-*-products [J].
Huo, Donghua ;
Zheng, Baodong ;
Liu, Hongyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) :830-844
[6]  
Li C, 2018, B IRAN MATH SOC, V44, P729, DOI 10.1007/s41980-018-0048-3
[7]   Nonlinear Skew Lie Triple Derivations between Factors [J].
Li, Chang Jing ;
Zhao, Fang Fang ;
Chen, Quan Yuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (07) :821-830
[8]   Strong Skew Commutativity Preserving Maps on Rings with Involution [J].
Li, Chang Jing ;
Chen, Quan Yuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (06) :745-752
[9]   Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras [J].
Li, Changjing ;
Chen, Quanyuan ;
Wang, Ting .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (04) :633-642
[10]  
Li CJ, 2017, COMPLEX ANAL OPER TH, V11, P109, DOI 10.1007/s11785-016-0575-y