Nonlinear Maps Preserving the Mixed Product [A ○ B, C]* on Von Neumann Algebras

被引:16
|
作者
Li, Changjing [1 ]
Zhao, Yuanyuan [1 ]
Zhao, Fangfang [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Jordan *-product; isomorphism; von Neumann algebras; 2-LOCAL LIE ISOMORPHISMS; TRIPLE ASTERISK-PRODUCT; MAPPINGS; RINGS;
D O I
10.2298/FIL2108775L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be two von Neumann algebras. For A, B is an element of A, define by [A, B](*) = AB - BA* and A circle B = AB + BA* the new products of A and B. Suppose that a bijective map Phi : A -> B satisfies Phi([A circle B, C](*)) = [Phi(A) circle Phi(B), Phi(C)](*) for all A, B, C is an element of A. In this paper, it is proved that if A and B be two von Neumann algebras with no central abelian projections, then the map Phi(I)Phi is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism, where Phi(I) is a self-adjoint central element in B with Phi(I)(2) = I. If A and B are two factor von Neumann algebras, then Phi is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.
引用
收藏
页码:2775 / 2781
页数:7
相关论文
共 50 条
  • [1] NONLINEAR MAPS PRESERVING THE MIXED PRODUCT A • B ° C ON VON NEUMANN ALGEBRAS
    Abedini, Leila
    Taghavi, Ali
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 671 - 678
  • [2] Nonlinear Maps Preserving Product on von Neumann Algebras
    Li, C.
    Zhao, F.
    Chen, Q.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03): : 729 - 738
  • [3] Nonlinear maps preserving mixed products on von Neumann algebras
    Gao, Meilian
    Zhao, Xingpeng
    Teng, Kaimin
    FILOMAT, 2024, 38 (15) : 5387 - 5397
  • [4] NONLINEAR MAPS PRESERVING THE JORDAN TRIPLE *-PRODUCT ON VON NEUMANN ALGEBRAS
    Li, Changjing
    Lu, Fangyan
    Wang, Ting
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03): : 496 - 507
  • [5] A result on nonlinear maps preserving mixed Jordan triple η-*-product on factor von Neumann algebras
    Alhazmi, Husain
    Khan, Abdul Nadim
    Raza, Mohd Arif
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 2099 - 2106
  • [6] Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras
    Changjing LI
    Quanyuan CHEN
    Ting WANG
    Chinese Annals of Mathematics,Series B, 2018, (04) : 633 - 642
  • [7] Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras
    Changjing Li
    Quanyuan Chen
    Ting Wang
    Chinese Annals of Mathematics, Series B, 2018, 39 : 633 - 642
  • [8] Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras
    Li, Changjing
    Chen, Quanyuan
    Wang, Ting
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (04) : 633 - 642
  • [9] Nonlinear Maps Preserving Mixed Jordan Triple Products on von Neumann Algebras
    Dongfang ZHANG
    Changjing LI
    Yuanyuan ZHAO
    Journal of Mathematical Research with Applications, 2022, 42 (04) : 374 - 380
  • [10] Nonlinear Maps Preserving the Jordan Triple 1-*-Product on Von Neumann Algebras
    Li, Changjing
    Lu, Fangyan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 109 - 117