Optimal control methods for quantum gate preparation: a comparative study

被引:15
作者
Riaz, Bilal [1 ]
Shuang, Cong [1 ]
Qamar, Shahid [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Anhui, Peoples R China
关键词
Quantum control; Krotov method; GRAPE; CRAB; GOAT; CNOT gate; Infidelity; Smooth quantum control; SIMPLEX-METHOD; SYSTEMS; CONTROLLABILITY; PRINCIPLES; DESIGN;
D O I
10.1007/s11128-019-2190-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, optimal control methods for quantum gate preparation are investigated. Quantum computation demands very high fidelity and requires controls to be easily tunable to achieve different computational tasks. Here, NOT and Controlled-NOT gates are prepared using four optimal control approaches on single- and two-qubit spin systems. Techniques we employed and compared are Krotov method, gradient ascent pulse engineering (GRAPE), chopped random basis optimization (CRAB) and gradient optimization of analytic controls (GOAT). For the preparation of NOT gate both unitary and Lindbladian dynamics are considered. From the numerical simulations, it is observed that GOAT achieves better results as compared to Krotov, GRAPE and CRAB, in terms of minimum infidelity, algorithmic simplicity and analyticity.
引用
收藏
页数:26
相关论文
共 55 条
  • [1] Notions of controllability for bilinear multilevel quantum systems
    Albertini, F
    D'Alessandro, D
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (08) : 1399 - 1403
  • [2] [Anonymous], 2007, Introduction to Quantum Control and Dynamics Chapman & Hall/CRC Applied Mathematics & Nonlinear Science
  • [3] ELEMENTARY GATES FOR QUANTUM COMPUTATION
    BARENCO, A
    BENNETT, CH
    CLEVE, R
    DIVINCENZO, DP
    MARGOLUS, N
    SHOR, P
    SLEATOR, T
    SMOLIN, JA
    WEINFURTER, H
    [J]. PHYSICAL REVIEW A, 1995, 52 (05): : 3457 - 3467
  • [5] Steering quantum dynamics via bang-bang control: Implementing optimal fixed-point quantum search algorithm
    Bhole, Gaurav
    Anjusha, V. S.
    Mahesh, T. S.
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [6] Resonator reset in circuit QED by optimal control for large open quantum systems
    Boutin, Samuel
    Andersen, Christian Kraglund
    Venkatraman, Jayameenakshi
    Ferris, Andrew J.
    Blais, Alexandre
    [J]. PHYSICAL REVIEW A, 2017, 96 (04)
  • [7] Chopped random-basis quantum optimization
    Caneva, Tommaso
    Calarco, Tommaso
    Montangero, Simone
    [J]. PHYSICAL REVIEW A, 2011, 84 (02):
  • [8] Time-optimal unitary operations
    Carlini, Alberto
    Hosoya, Akio
    Koike, Tatsuhiko
    Okudaira, Yosuke
    [J]. PHYSICAL REVIEW A, 2007, 75 (04)
  • [9] Small time controllability of systems on compact Lie groups and spin angular momentum
    D'Alessandro, D
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) : 4488 - 4496
  • [10] Second order gradient ascent pulse engineering
    de Fouquieres, P.
    Schirmer, S. G.
    Glaser, S. J.
    Kuprov, Ilya
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2011, 212 (02) : 412 - 417