Homoclinic Orbits and Chaos in Nonlinear Dynamical Systems: Auxiliary Systems Method

被引:0
作者
Grechko, D. A. [1 ,2 ]
Barabash, N., V [1 ,2 ]
Belykh, V. N. [1 ,2 ]
机构
[1] Volga State Univ Water Transport, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603022, Russia
基金
俄罗斯科学基金会;
关键词
homoclinic orbit; Van der Pol-Duffing oscillator; Shilnikov chaos;
D O I
10.1134/S199508022202007X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The auxiliary systems method in other words the method of two-dimensional comparison systems plays an essential role in the nonlocal bifurcational dynamical systems theory. In this paper we demonstrate this method in a particular case of 4-dimensional nonlinear dynamical system formed by a coupled Van der Pol-Duffing oscillator and a linear oscillator. For this system, using the auxiliary systems method, a rigorous proof of the existence of a homoclinic orbit of a saddle-focus is carried out for which the Shilnikov condition of chaos is satisfied. The paper is dedicated to the memory of Gennady A. Leonov, who made a significant contribution to the development of methods for the analytical study of dynamical systems.
引用
收藏
页码:3365 / 3371
页数:7
相关论文
共 14 条
  • [1] [Anonymous], 2007, Scholarpedia, DOI DOI 10.4249/SCHOLARPEDIA.1891
  • [2] Chaotic driven maps: Non-stationary hyperbolic attractor and hyperchaos
    Barabash, Nikita, V
    Belykh, Vladimir N.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (6-7) : 1071 - 1081
  • [3] Belykh V., 2018, Din. Sist, V8, P373
  • [4] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    Belykh, V. N.
    Pankratova, E. V.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3) : 274 - 284
  • [5] Belykh V.N., 1997, P STEKLOV I, V216, P20
  • [6] Belykh V.N., 2000, T AMS 2, V200, P51
  • [7] Belykh V. N., 1984, Differ. Uravn, V20, P1666
  • [8] Shilnikov Chaos in Oscillators with Huygens Coupling
    Belykh, Vladimir N.
    Pankratova, Evgeniya V.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (08):
  • [9] Belyustina L., 1973, Differentsial'nye Uravneniya, V9, P595
  • [10] Chua L.O., 2001, Methods of Qualitative Theory in Nonlinear Dynamics (Part II), VVolume 5