Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis

被引:162
|
作者
Ying, Sheng [1 ,2 ]
Zhang, Deng-Feng [1 ]
Fu, Jing [1 ,2 ]
Shi, Yun-Su [1 ]
Song, Yan-Chun [1 ]
Wang, Tian-Yu [1 ]
Li, Yu [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Beijing 100081, Peoples R China
[2] China Agr Univ, Coll Biol Sci, Beijing 100193, Peoples R China
关键词
Abiotic stress; bZIP-transcription factor; Maize; Stress tolerance; ELEMENT-BINDING FACTOR; ABSCISIC-ACID; SIGNAL-TRANSDUCTION; GENE-EXPRESSION; ABIOTIC STRESS; REGULATORY NETWORKS; FREEZING TOLERANCE; FACTOR FAMILY; ABA RESPONSE; PROTEIN;
D O I
10.1007/s00425-011-1496-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In plants, the bZIP (basic leucine zipper) transcription factors regulate diverse functions, including processes such as plant development and stress response. However, few have been functionally characterized in maize (Zea mays). In this study, we cloned ZmbZIP72, a bZIP transcription factor gene from maize, which had only one copy in the maize genome and harbored three introns. Analysis of the amino acid sequence of ZmbZIP72 revealed a highly conserved bZIP DNA-binding domain in its C-terminal region, and four conserved sequences distributed in N- or C-terminal region. The ZmbZIP72 gene expressed differentially in various organs of maize plants and was induced by abscisic acid, high salinity, and drought treatment in seedlings. Subcellular localization analysis in onion epidermal cells indicated that ZmbZIP72 was a nuclear protein. Transactivation assay in yeast demonstrated that ZmbZIP72 functioned as a transcriptional activator and its N terminus (amino acids 23-63) was necessary for the transactivation activity. Heterologous overexpression of ZmbZIP72 improved drought and partial salt tolerance of transgenic Arabidopsis plants, as determined by physiological analyses of leaf water loss, electrolyte leakage, proline content, and survival rate under stress. In addition, the seeds of ZmbZIP72-overexpressing transgenic plants were hypersensitive to ABA and osmotic stress. Moreover, overexpression of ZmbZIP72 enhanced the expression of ABA-inducible genes such as RD29B, RAB18, and HIS1-3. These results suggest that the ZmbZIP72 protein functions as an ABA-dependent transcription factor in positive modulation of abiotic stress tolerance and may be a candidate gene with potential application in molecular breeding to enhance stress tolerance in crops.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 50 条
  • [1] Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis
    Sheng Ying
    Deng-Feng Zhang
    Jing Fu
    Yun-Su Shi
    Yan-Chun Song
    Tian-Yu Wang
    Yu Li
    Planta, 2012, 235 : 253 - 266
  • [2] ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton
    Chunling Wang
    Guoqing Lu
    Yuqiong Hao
    Huiming Guo
    Yan Guo
    Jun Zhao
    Hongmei Cheng
    Planta, 2017, 246 : 453 - 469
  • [3] ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton
    Wang, Chunling
    Lu, Guoqing
    Hao, Yuqiong
    Guo, Huiming
    Guo, Yan
    Zhao, Jun
    Cheng, Hongmei
    PLANTA, 2017, 246 (03) : 453 - 469
  • [4] A novel sweetpotato bZIP transcription factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis
    Chen Kang
    Hong Zhai
    Shaozhen He
    Ning Zhao
    Qingchang Liu
    Plant Cell Reports, 2019, 38 : 1373 - 1382
  • [5] A novel sweetpotato bZIP transcription factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis
    Kang, Chen
    Zhai, Hong
    He, Shaozhen
    Zhao, Ning
    Liu, Qingchang
    PLANT CELL REPORTS, 2019, 38 (11) : 1373 - 1382
  • [6] Grapevine bZIP transcription factor bZIP45 regulates VvANN1 and confers drought tolerance in Arabidopsis
    Niu, Shuaike
    Gu, Xiangyang
    Zhang, Qian
    Tian, Xuemin
    Chen, Zhan
    Liu, Jingru
    Wei, Xiaoju
    Yan, Chengxiang
    Liu, Ziwen
    Wang, Xiaoji
    Zhu, Zhengge
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [7] The Maize Gene ZmGLYI-8 Confers Salt and Drought Tolerance in Transgenic Arabidopsis Plants
    Yu, Ting
    Dong, Wei
    Hou, Xinwei
    Sun, Aiqing
    Li, Xinzheng
    Yu, Shaowei
    Zhang, Jiedao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [8] Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis
    Ying, Sheng
    Zhang, Deng-Feng
    Li, Hui-Yong
    Liu, Ying-Hui
    Shi, Yun-Su
    Song, Yan-Chun
    Wang, Tian-Yu
    Li, Yu
    PLANT CELL REPORTS, 2011, 30 (09) : 1683 - 1699
  • [9] Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis
    Sheng Ying
    Deng-Feng Zhang
    Hui-Yong Li
    Ying-Hui Liu
    Yun-Su Shi
    Yan-Chun Song
    Tian-Yu Wang
    Yu Li
    Plant Cell Reports, 2011, 30 : 1683 - 1699
  • [10] The Maize WRKY Transcription Factor ZmWRKY40 Confers Drought Resistance in Transgenic Arabidopsis
    Wang, Chang-Tao
    Ru, Jing-Na
    Liu, Yong-Wei
    Yang, Jun-Feng
    Li, Meng
    Xu, Zhao-Shi
    Fu, Jin-Dong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)