Fractional topological liquids with time-reversal symmetry and their lattice realization

被引:143
|
作者
Neupert, Titus [1 ]
Santos, Luiz [2 ]
Ryu, Shinsei [3 ]
Chamon, Claudio [4 ]
Mudry, Christopher [1 ]
机构
[1] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 16期
关键词
QUANTUM HALL STATES; LANDAU-LEVELS; EDGE STATES; TRANSPORT; EXCITATIONS; SUPERCONDUCTORS; QUANTIZATION; PHASES; MODEL; FLUID;
D O I
10.1103/PhysRevB.84.165107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a class of time-reversal-symmetric fractional topological liquid states in two dimensions that support fractionalized excitations. These are incompressible liquids made of electrons, for which the charge Hall conductance vanishes and the spin Hall conductance needs not be quantized. We then analyze the stability of edge states in these two-dimensional topological fluids against localization by disorder. We find a Z(2) stability criterion for whether or not there exists a Kramers pair of edge modes that is robust against disorder. We also introduce an interacting electronic two-dimensional lattice model based on partially filled flattened bands of a Z2 topological band insulator, which we study using numerical exact diagonalization. We show evidence for instances of the fractional topological liquid phase as well as for a time-reversal symmetry broken phase with a quantized (charge) Hall conductance in the phase diagram for this model.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Humean time-reversal symmetry
    Cristian López
    Michael Esfeld
    Synthese, 202
  • [42] Time-reversal symmetry breaking?
    Sergey V. Borisenko
    Alexander A. Kordyuk
    Andreas Koitzsch
    Martin Knupfer
    Jörg Fink
    Helmuth Berger
    Chengtian T. Lin
    Nature, 2004, 431 : 1 - 2
  • [43] Fermionic atoms in a spin-dependent optical lattice potential: Topological insulators with broken time-reversal symmetry
    Kuzmenko, Igor
    Brewczyk, Miroslaw
    Lach, Grzegorz
    Trippenbach, Marek
    Band, Y. B.
    PHYSICAL REVIEW B, 2024, 110 (20)
  • [44] Spontaneous Time-Reversal Symmetry Breaking for Spinless Fermions on a Triangular Lattice
    Tieleman, O.
    Dutta, O.
    Lewenstein, M.
    Eckardt, A.
    PHYSICAL REVIEW LETTERS, 2013, 110 (09)
  • [45] Excitonic instabilities and spontaneous time-reversal symmetry breaking on the honeycomb lattice
    Liu, Wei
    Punnoose, Alexander
    PHYSICAL REVIEW B, 2014, 89 (04):
  • [46] Spin-Orbit-Free Topological Insulators without Time-Reversal Symmetry
    Alexandradinata, A.
    Fang, Chen
    Gilbert, Matthew J.
    Bernevig, B. Andrei
    PHYSICAL REVIEW LETTERS, 2014, 113 (11)
  • [47] Interacting crystalline topological insulators in two-dimensions with time-reversal symmetry
    Soldini, Martina O.
    Aksoy, Omer M.
    Neupert, Titus
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [48] Nickel: The time-reversal symmetry conserving partner of iron on a chalcogenide topological insulator
    Vondracek, M.
    Cornils, L.
    Minar, J.
    Warmuth, J.
    Michiardi, M.
    Piamonteze, C.
    Barreto, L.
    Miwa, J. A.
    Bianchi, M.
    Hofmann, Ph.
    Zhou, L.
    Kamlapure, A.
    Khajetoorians, A. A.
    Wiesendanger, R.
    Mi, J. -L.
    Iversen, B. -B.
    Mankovsky, S.
    Borek, St.
    Ebert, H.
    Schueler, M.
    Wehling, T.
    Wiebe, J.
    Honolka, J.
    PHYSICAL REVIEW B, 2016, 94 (16)
  • [49] Absolutely continuous edge spectrum of topological insulators with an odd time-reversal symmetry
    Bols, Alex
    Cedzich, Christopher
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (04)
  • [50] Topological phase transitions and quantum oscillations in systems with broken time-reversal symmetry
    Yu, Xiang-Long
    Wu, Jiansheng
    PHYSICAL REVIEW B, 2021, 103 (20)