Fractional topological liquids with time-reversal symmetry and their lattice realization

被引:143
|
作者
Neupert, Titus [1 ]
Santos, Luiz [2 ]
Ryu, Shinsei [3 ]
Chamon, Claudio [4 ]
Mudry, Christopher [1 ]
机构
[1] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 16期
关键词
QUANTUM HALL STATES; LANDAU-LEVELS; EDGE STATES; TRANSPORT; EXCITATIONS; SUPERCONDUCTORS; QUANTIZATION; PHASES; MODEL; FLUID;
D O I
10.1103/PhysRevB.84.165107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a class of time-reversal-symmetric fractional topological liquid states in two dimensions that support fractionalized excitations. These are incompressible liquids made of electrons, for which the charge Hall conductance vanishes and the spin Hall conductance needs not be quantized. We then analyze the stability of edge states in these two-dimensional topological fluids against localization by disorder. We find a Z(2) stability criterion for whether or not there exists a Kramers pair of edge modes that is robust against disorder. We also introduce an interacting electronic two-dimensional lattice model based on partially filled flattened bands of a Z2 topological band insulator, which we study using numerical exact diagonalization. We show evidence for instances of the fractional topological liquid phase as well as for a time-reversal symmetry broken phase with a quantized (charge) Hall conductance in the phase diagram for this model.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Unveiling a crystalline topological insulator in a Weyl semimetal with time-reversal symmetry
    Arrachea, Liliana
    Aligia, Armando A.
    PHYSICAL REVIEW B, 2014, 90 (12)
  • [32] Humean time-reversal symmetry
    Lopez, Cristian
    Esfeld, Michael
    SYNTHESE, 2023, 202 (02)
  • [33] Experimental Demonstration of Topological Surface States Protected by Time-Reversal Symmetry
    Zhang, Tong
    Cheng, Peng
    Chen, Xi
    Jia, Jin-Feng
    Ma, Xucun
    He, Ke
    Wang, Lili
    Zhang, Haijun
    Dai, Xi
    Fang, Zhong
    Xie, Xincheng
    Xue, Qi-Kun
    PHYSICAL REVIEW LETTERS, 2009, 103 (26)
  • [34] Broken time-reversal symmetry in the topological superconductor UPt3
    K. E. Avers
    W. J. Gannon
    S. J. Kuhn
    W. P. Halperin
    J. A. Sauls
    L. DeBeer-Schmitt
    C. D. Dewhurst
    J. Gavilano
    G. Nagy
    U. Gasser
    M. R. Eskildsen
    Nature Physics, 2020, 16 : 531 - 535
  • [35] Anomaly indicators for topological orders with U(1) and time-reversal symmetry
    Lapa, Matthew F.
    Levin, Michael
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [36] A NOTE ON TIME-REVERSAL SYMMETRY
    GIRARD, R
    KROGER, H
    CANADIAN JOURNAL OF PHYSICS, 1985, 63 (08) : 1128 - 1131
  • [37] Noninvertible Time-Reversal Symmetry
    Choi, Yichul
    Lam, Ho Tat
    Shao, Shu-Heng
    PHYSICAL REVIEW LETTERS, 2023, 130 (13)
  • [38] Time-reversal symmetry in optics
    Leuchs, G.
    Sondermann, M.
    PHYSICA SCRIPTA, 2012, 85 (05)
  • [39] TIME-REVERSAL SYMMETRY OF FLUCTUATIONS
    POMEAU, Y
    JOURNAL DE PHYSIQUE, 1982, 43 (06): : 859 - 867
  • [40] Time-reversal symmetry breaking?
    Borisenko, SV
    Kordyuk, AA
    Koitzsch, A
    Knupfer, M
    Fink, J
    Berger, H
    Lin, CT
    NATURE, 2004, 431 (7004) : 1 - 2