Radial Basis Function Networks with Optimal Kernels

被引:0
作者
Krzyzak, Adam [1 ]
机构
[1] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
来源
2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2011年
关键词
Radial basis function networks; optimal kernel; optimal rate of convergence; regression estimation and classification; BASIS FUNCTION NETS; CONVERGENCE-RATES; REGRESSION; DENSITY; RISK;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider nonlinear function estimation using Radial Basis Function Networks. We analytically determine the optimal radial kernel minimizing the Mean Integrated Square Error (MISE) and the optimal MISE rate of convergence. The rates of convergence for various classes of nonlinear functions and input densities are also considered.
引用
收藏
页码:860 / 863
页数:4
相关论文
共 24 条
[1]  
[Anonymous], 2004, KERNEL METHODS PATTE
[2]  
[Anonymous], 1987, ALGORITHMS APPROXIMA
[3]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[4]   MEAN INTEGRATED SQUARE ERROR PROPERTIES OF DENSITY ESTIMATES [J].
DAVIS, KB .
ANNALS OF STATISTICS, 1977, 5 (03) :530-535
[5]   A NOTE ON THE USEFULNESS OF SUPERKERNELS IN DENSITY-ESTIMATION [J].
DEVROYE, L .
ANNALS OF STATISTICS, 1992, 20 (04) :2037-2056
[6]   AN EQUIVALENCE THEOREM FOR L1 CONVERGENCE OF THE KERNEL REGRESSION ESTIMATE [J].
DEVROYE, L ;
KRZYZAK, A .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 23 (01) :71-82
[7]  
Devroye L, 1987, Progress in Probability and Statistics
[8]  
Girosi F., 1993, ARTIFICIAL NEURAL NE, P97
[9]  
Gyorfi L., 2002, SPRINGER SERIES STAT
[10]  
Kawata T., 1972, FOURIER ANAL PROBABI