Abstract-Induced Modules for Reductive Algebraic Groups With Frobenius Maps

被引:7
作者
Chen, Xiaoyu [1 ]
Dong, Junbin [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, 100 Guilin Rd, Shanghai 200234, Peoples R China
[2] ShanghaiTech Univ, Inst Math Sci, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
关键词
FINITE-GROUPS; REPRESENTATIONS; SERIES; VARIETIES;
D O I
10.1093/imrn/rnaa352
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive algebraic group defined over a finite field F-q of q elements and B be a Borel subgroup of G defined over F-q. Let k be a field and we assume that k = (F) over bar (q) when char k = char F-q. We show that the abstract-induced module M(theta) = kG circle times(kB) theta (here kH is the group algebra of H over the field k and theta is a character of B over k) has a composition series (of finite length) if char k not equal char F-q. In the case k = (F) over bar (q) and theta is a rational character, we give a necessary and sufficient condition for the existence of a composition series (of finite length) of M(theta). We determine all the composition factors whenever a composition series exists. Thus we obtain a large class of abstract infinite-dimensional irreducible kG-modules.
引用
收藏
页码:3308 / 3348
页数:41
相关论文
共 33 条
[1]  
Andersen H.H., 1994, ASTERISQUE, V220, P321
[2]   HOMOMORPHISM ABSTRACTS OF SIMPLE ALGEBRAIC GROUPS [J].
BOREL, A ;
TITS, J .
ANNALS OF MATHEMATICS, 1973, 97 (03) :499-571
[3]  
Cabanes M., 2004, Representation Theory of Finite Reductive Groups
[4]  
Carter R., 1993, Finite groups of Lie type
[5]  
CARTER RW, 1976, P LOND MATH SOC, V32, P347
[6]  
Chen X, 2020, ARXIV170504845V1
[7]  
Chen X, 2020, ARXIV170205686V2
[8]   The decomposition of permutation module for infinite Chevalley groups [J].
Chen, Xiaoyu ;
Dong, Junbin .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (05) :921-930
[9]   The permutation module on flag varieties in cross characteristic [J].
Chen, Xiaoyu ;
Dong, Junbin .
MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) :475-484
[10]   RATIONAL AND GENERIC CHOHOMOLOGY [J].
CLINE, E ;
PARSHALL, B ;
SCOTT, L ;
VANDERKALLEN, W .
INVENTIONES MATHEMATICAE, 1977, 39 (02) :143-163