Convergence of time-splitting energy-conserved symplectic schemes for 3D Maxwell's equations

被引:5
|
作者
Cai, Jiaxiang [1 ,2 ]
Wang, Yushun [2 ]
Gong, Yuezheng [2 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Maxwell's equations; Energy conservation; Pseudo-spectral method; Time-splitting; Error estimate; DOMAIN METHODS; CONSTRUCTION; INTEGRATORS; DIMENSIONS; ALGORITHM; MEDIA;
D O I
10.1016/j.amc.2015.04.118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose two symplectic and two non-symplectic schemes for 3D Maxwell's equations based on the exponential operator splitting technique and Fourier pseudo-spectral method. These schemes are efficient and unconditionally stable, and also preserve four discrete energy conservation laws simultaneously. The error estimates of the schemes are obtained by using some special techniques and the energy method. Numerical results confirm the theoretical analysis. The numerical comparison with some existing methods show the good performance of the proposed schemes. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 50 条
  • [31] Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
    Fezoui, L
    Lanteri, S
    Lohrengel, S
    Piperno, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1149 - 1176
  • [32] Energy conservation and super convergence analysis of the EC-S-FDTD schemes for Maxwell equations with periodic boundaries
    Gao, Liping
    Cao, Minmin
    Shi, Rengang
    Guo, Hui
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1562 - 1587
  • [33] A mortar spectral element method for 3D Maxwell's equations
    Boulmezaoud, TZ
    El Rhabi, M
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (03) : 577 - 610
  • [34] Energy Identities and Stability Analysis of the Yee Scheme for 3D Maxwell Equations
    Gao, Liping
    Sang, Xiaorui
    Shi, Rengang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (03) : 788 - 813
  • [35] A new second order 3D edge element on tetrahedra for time dependent Maxwell's equations
    Joly, P
    Poirier, C
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 842 - 847
  • [36] Energy-preserving local mesh-refined splitting FDTD schemes for two dimensional Maxwell's equations
    Xie, Jianqiang
    Liang, Dong
    Zhang, Zhiyue
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 425
  • [37] Electromagnetic field behavior of 3D Maxwell's equations for chiral media
    Huang, Tsung-Ming
    Li, Tiexiang
    Chern, Ruey-Lin
    Lin, Wen-Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 379 : 118 - 131
  • [38] Maxwell's Equations based 3D model of Light Scattering in the Retina
    Santos, Miriam
    Araujo, Aderito
    Barbeiro, Silvia
    Caramelo, Francisco
    Correia, Antonio
    Marques, Maria Isabel
    Morgado, Miguel
    Pinto, Luis
    Serranho, Pedro
    Bernardes, Rui
    2015 IEEE 4TH PORTUGUESE MEETING ON BIOENGINEERING (ENBENG), 2015,
  • [39] A full-wave solution of the Maxwell's equations in 3D plasmas
    Popovich, P
    Mellet, N
    Villard, L
    Cooper, WA
    Radio Frequency Power in Plasmas, 2005, 787 : 62 - 65
  • [40] Analysis of Time–Domain Maxwell's Equations for 3-D Cavities
    Tri Van
    Aihua Wood
    Advances in Computational Mathematics, 2002, 16 : 211 - 228