Technological, economic and environmental prospects of all-electric aircraft

被引:331
作者
Schafer, Andreas W. [1 ]
Barrett, Steven R. H. [2 ]
Doyme, Khan [1 ]
Dray, Lynnette M. [1 ]
Nadt, Albert R. G. [2 ]
Self, Rod [3 ]
O'Sullivan, Aidan [1 ]
Synodinos, Athanasios P. [3 ]
Torija, Antonio J. [3 ]
机构
[1] UCL, UCL Energy Inst, Air Transportat Syst Lab, Cent House, London, England
[2] MIT, Dept Aeronaut & Astronaut, Lab Aviat & Environm, Cambridge, MA 02139 USA
[3] Univ Southampton, Inst Sound & Vibrat Res, Engn & Environm, Southampton, Hants, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
ION BATTERY; AVIATION; IMPACT; EMISSIONS; NOISE;
D O I
10.1038/s41560-018-0294-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ever since the Wright brothers'first powered flight in 1903, commercial aircraft have relied on liquid hydrocarbon fuels. However, the need for greenhouse gas emission reductions along with recent progress in battery technology for automobiles has generated strong interest in electric propulsion in aviation. This Analysis provides a first-order assessment of the energy, economic and environmental implications of all-electric aircraft. We show that batteries with significantly higher specific energy and lower cost, coupled with further reductions of costs and CO2 intensity of electricity, are necessary for exploiting the full range of economic and environmental benefits provided by all-electric aircraft. A global fleet of all-electric aircraft serving all flights up to a distance of 400-600 nautical miles (741-1,111km) would demand an equivalent of 0.6-1.7% of worldwide electricity consumption in 2015. Although lifecycle CO2 emissions of all-electric aircraft depend on the power generation mix, all direct combustion emissions and thus direct air pollutants and direct non-CO2 warming impacts would be eliminated.
引用
收藏
页码:160 / 166
页数:7
相关论文
共 62 条
[1]  
Airbus, 2017, GLOB MARK FOR 2017 2
[2]  
Airbus, 2015, E FAN NEW WAY FLY
[3]  
Aircraft Commerce, 2017, MAINTENANCE ENG
[4]  
[Anonymous], 2010, PIAN X
[5]  
[Anonymous], 2012, NCR18650B PAN
[6]   The costs of production of alternative jet fuel: A harmonized stochastic assessment [J].
Bann, Seamus J. ;
Malina, Robert ;
Staples, Mark D. ;
Suresh, Pooja ;
Pearlson, Matthew ;
Tyner, Wallace E. ;
Hileman, James I. ;
Barrett, Steven .
BIORESOURCE TECHNOLOGY, 2017, 227 :179-187
[7]  
Boeing, 2017, CURR MARK OUTL 2017
[8]  
Bradley M. K., 2011, NASACR2011216847 BOE
[9]  
Bradley M.K., 2012, SUBSONIC ULTRA GREEN
[10]   IMPACT OF AVIATION ON CLIMATE FAA's Aviation Climate Change Research Initiative (ACCRI) Phase II [J].
Brasseur, Guy P. ;
Gupta, Mohan ;
Anderson, Bruce E. ;
Balasubramanian, Sathya ;
Barrett, Steven ;
Duda, David ;
Fleming, Gregg ;
Forster, Piers M. ;
Fuglestvedt, Jan ;
Gettelman, Andrew ;
Halthore, Rangasayi N. ;
Jacob, S. Daniel ;
Jacobson, Mark Z. ;
Khodayari, Arezoo ;
Liou, Kuo-Nan ;
Lund, Marianne T. ;
Miake-Lye, Richard C. ;
Minnis, Patrick ;
Olsen, Seth ;
Penner, Joyce E. ;
Prinn, Ronald ;
Schumann, Ulrich ;
Selkirk, Henry B. ;
Sokolov, Andrei ;
Unger, Nadine ;
Wolfe, Philip ;
Wong, Hsi-Wu ;
Wuebbles, Donald W. ;
Yi, Bingqi ;
Yang, Ping ;
Zhou, Cheng .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (04) :561-583