On the modularity of Q-curves

被引:25
作者
Ellenberg, JS [1 ]
Skinner, C
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1215/S0012-7094-01-10914-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Q-curve is an elliptic curve over a number field K which is geometrically isogenous to each of its Galois conjugates. K. Ribet [17] asked whether every Q-curve is modular and he showed that a positive answer would follow from J.-P Serre's conjecture on mod p Galois representations. We answer Ribet's question in the affirmative, subject to certain local conditions at 3.
引用
收藏
页码:97 / 122
页数:26
相关论文
共 24 条
[11]  
Grothendieck A., 1972, LECT NOTES MATH, V288
[12]  
Grundman H., 1995, EXPO MATH, V13, P289
[13]   Modularity conjecture for Q-curves and QM-curves [J].
Hasegawa, Y ;
Hashimoto, KI ;
Momose, F .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (08) :1011-1036
[14]  
HIDA H., 2000, PREPRINT
[15]   Q-curves and abelian varieties of GL2-type [J].
Quer, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :285-317
[16]  
RAYNAUD M, 1974, B SOC MATH FR, V102, P241
[17]  
RIBET K. A., 1992, ALGEBRA TOPOLOGY 199, P53
[18]   GALOIS ACTION ON DIVISION POINTS OF ABELIAN VARIETIES WITH REAL MULTIPLICATIONS [J].
RIBET, KA .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (03) :751-804
[19]   The modularity of some Q-curves [J].
Roberts, BB ;
Washington, LC .
COMPOSITIO MATHEMATICA, 1998, 111 (01) :35-49
[20]  
Serre J.-P., 1977, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, P193