On the modularity of Q-curves

被引:25
作者
Ellenberg, JS [1 ]
Skinner, C
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1215/S0012-7094-01-10914-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Q-curve is an elliptic curve over a number field K which is geometrically isogenous to each of its Galois conjugates. K. Ribet [17] asked whether every Q-curve is modular and he showed that a positive answer would follow from J.-P Serre's conjecture on mod p Galois representations. We answer Ribet's question in the affirmative, subject to certain local conditions at 3.
引用
收藏
页码:97 / 122
页数:26
相关论文
共 24 条
[1]  
[Anonymous], 1971, KANO MEMORIAL LECT
[2]  
BREUIL C, IN PRESS J AM MATH S
[3]   Modularity of certain potentially Barsotti-Tate Galois representations [J].
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :521-567
[4]   Ramified deformation problems [J].
Conrad, B .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (03) :439-513
[5]  
Cornell G., 1997, MODULAR FORMS FERMAT, pxx+582
[6]  
Darmon H., 1995, CMS C P, V17, P135
[7]  
DELIGNE P, 1974, ANN SCI ECOLE NORM S, V7, P507
[8]   On deformation rings and Hecke rings [J].
Diamond, F .
ANNALS OF MATHEMATICS, 1996, 144 (01) :137-166
[9]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[10]  
Gelbart S, 1997, MODULAR FORMS AND FERMAT'S LAST THEOREM, P155