Effect of Dzyaloshinskii-Moriya Interaction on the Entanglement and Quantum Phase Transition in Two-Dimensional XXZ Model

被引:1
作者
Iftikhar, M. Tahir [1 ]
Usman, M. [1 ]
Khan, Khalid [1 ]
机构
[1] Quaid I Azam Univ, Dept Phys, Islamabad 45320, Pakistan
关键词
Quantum phase transition; Quantum renormalization group; Heisenberg XXZ model; Quantum entanglement; Quantum Fisher information; Dzyaloshinskii-Moriya interaction; RENORMALIZATION-GROUP APPROACH; FISHER INFORMATION; MULTIPARTITE ENTANGLEMENT; XY MODEL; DENSITY; COMPUTATION; STATE; ANTIFERROMAGNET; DISTANCE; SPACE;
D O I
10.1007/s10773-022-05021-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effect of Dzyaloshinskii-Moriya interaction and the anisotropy on the entanglement of the two-dimensional Heisenberg XXZ model. Concurrence and quantum Fisher information are computed to witness the entanglement. It is observed that the anisotropy suppresses the concurrence and this suppression can be compensated by the Dzyaloshinskii-Moriya interaction.We solved the model by using quantum renormalization group method and computed the unstable fixed points of the model and obtained the phase diagram of the model. In phase diagram, the critical line separates the two phases, the spinfluid phase and the N ' eel phase. Interestingly, a variation in the quantum phase transition of the model is observed while tuning the Dzyaloshinskii-Moriya interaction. At phase transition point, the non analyticity using first derivative and the scaling behavior is studied for both, the concurrence and the quantum Fisher information. Moreover, the scaling exponent successfully describes the correlation length of the model at the critical point.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Effect of Dzyaloshinskii-Moriya interaction on quantum entanglement in superconductors models of high Tc [J].
Lima, Leonardo S. .
EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (01)
[32]   Effect of Dzyaloshinskii-Moriya Interaction on Thermal Quantum Correlation in a Two-Qubit Heisenberg XXZ Model with an Inhomogeneous External Magnetic Field [J].
Zhou, C. B. ;
Xiao, S. Y. ;
Zhang, X. ;
Ran, Y. Q. .
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2016, 29 (02) :367-374
[33]   Entanglement in Mixed-Spin (1/2, 3/2) Heisenberg XXZ Model with Dzyaloshinskii-Moriya Interaction [J].
Chao-Biao Zhou ;
Shu-Yuan Xiao ;
Shao-Wu Zhang ;
Yang-Qiang Ran .
International Journal of Theoretical Physics, 2016, 55 :875-885
[34]   Effect of the Dzyaloshinskii-Moriya interaction on quantum speed limit and orthogonality catastrophe [J].
Zhu, Zheng-Rong ;
Wang, Qing ;
Shao, Bin ;
Zou, Jian ;
Wu, Lian-Ao .
PHYSICAL REVIEW A, 2023, 107 (04)
[35]   Dynamics of Quantum Correlation in a Two-qutrit Heisenberg XXZ Model with Heitler-London and Dzyaloshinskii-Moriya Couplings [J].
Adnane, Brahim ;
Moqine, Younes ;
Khribach, Aziz ;
El Houri, Abdelghani ;
Houca, Rachid ;
Choubabi, El Bouazzaoui ;
Belouad, Abdelhadi .
ANNALEN DER PHYSIK, 2024, 536 (08)
[36]   Classical correlation and quantum entanglement in the mixed-spin Ising-XY model with Dzyaloshinskii-Moriya interaction [J].
Zad, Hamid Arian ;
Movahhedian, Hossein .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (13)
[37]   Ineffectiveness of the Dzyaloshinskii-Moriya interaction in the dynamical quantum phase transition in the ITF mode [J].
Cheraghi, Hadi ;
Mandavifar, Saeed .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (42)
[38]   Tripartite quantum correlations in XXZ Heisenberg spin chain with Dzyaloshinskii-Moriya interaction [J].
Tian, Qing-long ;
Guo, You-neng ;
Chen, Xiang-jun ;
Wang, Shi-feng .
QUANTUM INFORMATION PROCESSING, 2023, 22 (05)
[39]   Entanglement evolution in an anisotropic two-qubit Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction [J].
Chen Tao ;
Huang Yan-Xia ;
Shan Chuan-Jia ;
Li Jin-Xing ;
Liu Ji-Bing ;
Liu Tang-Kun .
CHINESE PHYSICS B, 2010, 19 (05) :0503021-0503026
[40]   Entanglement in Mixed-Spin (1/2,3/2) Heisenberg XXZ Model with Dzyaloshinskii-Moriya Interaction [J].
Zhou, Chao-Biao ;
Xiao, Shu-Yuan ;
Zhang, Shao-Wu ;
Ran, Yang-Qiang .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (02) :875-885