Carbon capture powered by solar energy

被引:19
作者
Bennett, Robert [1 ]
Clifford, Sarah [1 ]
Anderson, Kenrick [1 ]
Puxty, Graeme [1 ]
机构
[1] CSIRO CET, 10 Murray Dwyer Circuit, Mayfield West 2304, Australia
来源
13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13 | 2017年 / 114卷
关键词
Photoacids; Carbon capture; solar energy; DIELS-ALDER REACTION; STATE PROTON-TRANSFER; CO2; PHOTOACIDS; STORAGE;
D O I
10.1016/j.egypro.2017.03.1139
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The urgent implementation of emissions control measures is inhibited in part by the expense of carbon capture technology. A large part of the cost of amine based approaches is in the heat regeneration of the absorbent. An alternative way to do this could be through use of abundant solar energy. In a new approach, direct chemical action on the absorbed CO2 was achieved by use of a reversible photoacid. Irradiation of the CO2 loaded solution resulted in CO2 removal by action of light. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 18 条
  • [1] Photoactivatable HNO-releasing compounds using the retro-Diels-Alder reaction
    Adachi, Yusuke
    Nakagawa, Hidehiko
    Matsuo, Kazuya
    Suzuki, Takayoshi
    Miyata, Naoki
    [J]. CHEMICAL COMMUNICATIONS, 2008, (41) : 5149 - 5151
  • [2] [Anonymous], 2014, Fifth assessment report (AR5). Synthesis Report
  • [3] EXCITED-STATE PROTON-TRANSFER REACTIONS .1. FUNDAMENTALS AND INTERMOLECULAR REACTIONS
    ARNAUT, LG
    FORMOSINHO, SJ
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1993, 75 (01) : 1 - 20
  • [4] Establishing cleavage conditions for an anthracene chiral auxiliary using a photochemical retro Diels-Alder reaction
    Atherton, JCC
    Jones, S
    [J]. TETRAHEDRON LETTERS, 2002, 43 (50) : 9097 - 9100
  • [5] Carbon capture and storage update
    Boot-Handford, M. E.
    Abanades, J. C.
    Anthony, E. J.
    Blunt, M. J.
    Brandani, S.
    Mac Dowell, N.
    Fernandez, J. R.
    Ferrari, M. -C.
    Gross, R.
    Hallett, J. P.
    Haszeldine, R. S.
    Heptonstall, P.
    Lyngfelt, A.
    Makuch, Z.
    Mangano, E.
    Porter, R. T. J.
    Pourkashanian, M.
    Rochelle, G. T.
    Shah, N.
    Yao, J. G.
    Fennell, P. S.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) : 130 - 189
  • [6] Carbon Capture and Sequestration
    Chu, Steven
    [J]. SCIENCE, 2009, 325 (5948) : 1599 - 1599
  • [7] Protonation constants and thermodynamic properties of amines for post combustion capture of CO2
    Fernandes, Debra
    Conway, William
    Wang, Xiaoguang
    Burns, Robert
    Lawrance, Geoffrey
    Maeder, Marcel
    Puxty, Graeme
    [J]. JOURNAL OF CHEMICAL THERMODYNAMICS, 2012, 51 : 97 - 102
  • [8] Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation
    Friedlingstein, P.
    Solomon, S.
    Plattner, G-K.
    Knutti, R.
    Ciais, P.
    Raupach, M. R.
    [J]. NATURE CLIMATE CHANGE, 2011, 1 (09) : 457 - 461
  • [9] Carbon Capture and Storage: How Green Can Black Be?
    Haszeldine, R. Stuart
    [J]. SCIENCE, 2009, 325 (5948) : 1647 - 1652
  • [10] Economic and energetic analysis of capturing CO2 from ambient air
    House, Kurt Zenz
    Baclig, Antonio C.
    Ranjan, Manya
    van Nierop, Ernst A.
    Wilcox, Jennifer
    Herzog, Howard J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (51) : 20428 - 20433