On a random scaled porous media equation

被引:29
作者
Barbu, Viorel [3 ,4 ]
Roeckner, Michael [1 ,2 ]
机构
[1] Univ Bielefeld, Dept Math, Bielefeld, Germany
[2] Univ Bielefeld, BiBoS, Bielefeld, Germany
[3] Alexandru Ioan Cuza Univ, Dept Math, Iasi, Romania
[4] Octav Mayer Inst Math, Iasi, Romania
关键词
Stochastic porous media equation; Wiener process; Stochastic basis; Dirichlet problem; Sobolev embedding theorem; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.jde.2011.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a random scaled porous media equation arising from a stochastic porous media equation with linear multiplicative noise through a random transformation is well-posed in L-infinity. In the fast diffusion case we show existence in L-p. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2494 / 2514
页数:21
相关论文
共 30 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[3]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[4]  
Barbu V, 2008, INDIANA U MATH J, V57, P187
[5]   Weak solutions to the stochastic porous media equation via Kolmogorov equations:: The degenerate case [J].
Barbu, Viorel ;
Bogachev, Vladimir I. ;
Da Prato, Giuseppe ;
Roeckner, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 237 (01) :54-75
[6]   Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case [J].
Barbu, Viorel ;
Roeckner, Michael ;
Russo, Francesco .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (1-2) :1-43
[7]   STOCHASTIC NONLINEAR DIFFUSION EQUATIONS WITH SINGULAR DIFFUSIVITY [J].
Barbu, Viorel ;
Da Prato, Giuseppe ;
Roeckner, Michael .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :1106-1120
[8]   EXISTENCE OF STRONG SOLUTIONS FOR STOCHASTIC POROUS MEDIA EQUATION UNDER GENERAL MONOTONICITY CONDITIONS [J].
Barbu, Viorel ;
Da Prato, Giuseppe ;
Roeckner, Michael .
ANNALS OF PROBABILITY, 2009, 37 (02) :428-452
[9]   Finite time extinction for solutions to fast diffusion stochastic porous media equations [J].
Barbu, Viorel ;
Da Prato, Giuseppe ;
Roeckner, Michael .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (1-2) :81-84
[10]   Stochastic Porous Media Equations and Self-Organized Criticality [J].
Barbu, Viorel ;
Da Prato, Giuseppe ;
Roeckner, Michael .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (03) :901-923