Height structure of X-ray, EUV, and white-light emission in a solar flare

被引:32
作者
Battaglia, M. [1 ]
Kontar, E. P. [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
关键词
Sun: flares; Sun:; X-rays; gamma-rays; Sun: radio radiation; Sun: UV radiation; acceleration of particles; NONTHERMAL ELECTRONS; CHROMOSPHERIC HEIGHT; DENSITY-MEASUREMENTS; CONTINUUM EMISSION; RHESSI; SPECTRA; MODELS; YOHKOH; SUN; IONIZATION;
D O I
10.1051/0004-6361/201117605
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The bulk of solar flare emission originates from very compact sources located in the lower solar atmosphere and observable at a broad range of wavelengths such as near optical, UV, EUV, soft and hard X-rays, and gamma-rays. Nevertheless, very few spatially resolved imaging observations have been performed to determine the structure of these compact regions. Aims. We investigate the above-the-photosphere heights of hard X-ray (HXR), EUV, and white-light (6173 angstrom) continuum sources in the low atmosphere and the corresponding densities at these heights. By considering the collisional transport of solar energetic electrons, we also determine where and how much energy is deposited and compare these values with the emissions observed in HXR, EUV, and the continuum. Methods. Simultaneous EUV/continuum images from AIA/HMI on-board SDO and HXR RHESSI images are compared to study a well-observed gamma-ray limb flare. Using RHESSI X-ray visibilities, we determine the height of the HXR sources as a function of energy above the photosphere. Co-aligning AIA/SDO and HMI/SDO images with RHESSI, we infer, for the first time, the heights and characteristic densities of HXR, EUV, and continuum (white-light) sources in the flaring footpoint of the magnetic loop. Results. We find 35-100 keV HXR sources at heights of between 1.7 and 0.8Mm above the photosphere, below the 6173 angstrom continuum emission that appears at heights 1.5-3 Mm and the peak of EUV emission originating near 3 Mm. Conclusions. The EUV emission locations are consistent with energy deposition from low energy electrons of similar to 12 keV occurring in the top layers of the fully ionized chromosphere/low corona and not by greater than or similar to 20 keV electrons that produce HXR footpoints in the lower neutral chromosphere. The maximum of white-light continuum emission appears between the HXR and EUV emission, presumably in the transition between ionized and neutral atmospheres, implying that it consists of free-bound and free-free continuum emission. We note that the energy deposited by low energy electrons is sufficient to explain the energetics of both the optical and UV emissions.
引用
收藏
页数:4
相关论文
共 41 条
[1]   Chromospheric height and density measurements in a solar flare observed with RHESSI - II - Data analysis [J].
Aschwanden, MJ ;
Brown, JC ;
Kontar, EP .
SOLAR PHYSICS, 2002, 210 (1-2) :383-405
[2]   HARD X-RAY FOOTPOINT SIZES AND POSITIONS AS DIAGNOSTICS OF FLARE ACCELERATED ENERGETIC ELECTRONS IN THE LOW SOLAR ATMOSPHERE [J].
Battaglia, M. ;
Kontar, E. P. .
ASTROPHYSICAL JOURNAL, 2011, 735 (01)
[3]   ANALYSIS OF A WHITE-LIGHT FLARE SPECTRUM [J].
BOYER, R ;
MACHADO, ME ;
RUST, DM ;
SOTIROVSKI, P .
SOLAR PHYSICS, 1985, 98 (02) :255-266
[4]  
BROWN JC, 1973, SOL PHYS, V31, P143, DOI 10.1007/BF00156080
[6]   Chromospheric height and density measurements in a solar flare observed with RHESSI - I - Theory [J].
Brown, JC ;
Aschwanden, MJ ;
Kontar, EP .
SOLAR PHYSICS, 2002, 210 (1-2) :373-381
[7]   THEORETICAL CHROMOSPHERIC FLARE SPECTRA .2. HYDROGEN EQUILIBRIUM FOR BROWNS (1973) MODELS FOR HEATING BY NONTHERMAL ELECTRONS [J].
CANFIELD, RC .
SOLAR PHYSICS, 1974, 34 (02) :339-348
[8]   Footpoint motion of the continuum emission in the 2002 September 30 white-light flare [J].
Chen, QR ;
Ding, MD .
ASTROPHYSICAL JOURNAL, 2006, 641 (02) :1217-1221
[9]   Heating in the lower atmosphere and the continuum emission of solar white-light flares [J].
Ding, MD ;
Fang, C ;
Yun, HS .
ASTROPHYSICAL JOURNAL, 1999, 512 (01) :454-457
[10]   The determination of the total injected power in solar flare electrons [J].
Emslie, AG .
ASTROPHYSICAL JOURNAL, 2003, 595 (02) :L119-L121