Self-heating of silicon microwires: Crystallization and thermoelectric effects

被引:29
作者
Bakan, Gokhan [1 ]
Khan, Niaz [1 ]
Cywar, Adam [1 ]
Cil, Kadir [1 ]
Akbulut, Mustafa [1 ]
Gokirmak, Ali [1 ]
Silva, Helena [1 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
INDUCED LATERAL CRYSTALLIZATION; THIN-FILM TRANSISTORS; ELECTRICAL-RESISTIVITY; SEEBECK COEFFICIENT; NANOWIRE CHANNELS; SI; POLYSILICON;
D O I
10.1557/jmr.2011.32
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe experiments on self-heating and melting of nanocrystalline silicon microwires using single high-amplitude microsecond voltage pulses, which result in growth of large single-crystal domains upon resolidification. Extremely high current densities (>20 MA/cm(2)) and consequent high temperatures (1700 K) and temperature gradients (1 K/nm) along the microwires give rise to strong thermoelectric effects. The thermoelectric effects are characterized through capture and analysis of light emission from the self-heated wires biased with lower magnitude direct current/alternating current voltages. The hottest spot on the wires consistently appears closer to the lower potential end for n-type microwires and to the higher potential end for p-type microwires. The experimental light emission profiles are used to verify the mathematical models and material parameters used for the simulations. Good agreement between experimental and simulated profiles indicates that these models can be used to predict and design optimum geometry and bias conditions for current-induced crystallization of microstructures.
引用
收藏
页码:1061 / 1071
页数:11
相关论文
共 39 条
[1]   Crystallization of silicon films by rapid joule heating method [J].
Andoh, N ;
Sameshima, T ;
Kitahara, K .
THIN SOLID FILMS, 2005, 487 (1-2) :118-121
[2]  
AYAS S, 2010, 2010 MRS FALL M BOST
[3]   Melting and crystallization of nanocrystalline silicon microwires through rapid self-heating [J].
Bakan, G. ;
Cywar, A. ;
Silva, H. ;
Gokirmak, A. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[4]  
BAKAN G, 2009, MAT RES SOC S P E, V1178, pAA6
[5]  
BRANDON DG, 1999, MICROSTRUCTURAL CHAR, P536
[6]   Nanostructured Bulk Silicon as an Effective Thermoelectric Material [J].
Bux, Sabah K. ;
Blair, Richard G. ;
Gogna, Pawan K. ;
Lee, Hohyun ;
Chen, Gang ;
Dresselhaus, Mildred S. ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (15) :2445-2452
[7]   Evidence of the thermo-electric Thomson effect and influence on the program conditions and cell optimization in phase-change memory cells [J].
Castro, D. Tio ;
Goux, L. ;
Hurkx, G. A. M. ;
Attenborough, K. ;
Delhougne, R. ;
Lisoni, J. ;
Jedema, F. J. ;
Zandt, M. A. A. In't ;
Wolters, R. A. M. ;
Gravesteijn, D. J. ;
Verheijen, M. A. ;
Kaiser, M. ;
Weemaes, R. G. R. ;
Wouters, D. J. .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :315-+
[8]  
*COMSOL MULT, MOD LIB
[9]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[10]   Local synthesis of silicon nanowires and carbon nanotubes on microbridges [J].
Englander, O ;
Christensen, D ;
Lin, LW .
APPLIED PHYSICS LETTERS, 2003, 82 (26) :4797-4799