On families of linear recurrence relations for the special values of the Riemann zeta function

被引:7
作者
Merca, Mircea [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, DJ, Romania
关键词
Bernoulli numbers; Bernoulli polynomials; Riemann zeta function; Recurrences; ELEMENTARY PROOF; EULERS FORMULA;
D O I
10.1016/j.jnt.2016.06.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the generating function of the Bernoulli polynomials to introduce a number of infinite families of linear recurrence relations for the Riemann zeta function at positive even integer arguments, zeta(2n). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 23 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
[2]  
[Anonymous], 1975, Math. Mag.
[3]  
[Anonymous], 1971, Math. Mag.
[4]  
[Anonymous], 1953, The American Mathematical Monthly
[5]  
Apostol T.M., 1976, INTRO ANAL NUMBER TH
[6]   ANOTHER ELEMENTARY PROOF OF EULERS FORMULA FOR ZETA (2N) [J].
APOSTOL, TM .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (04) :425-431
[7]   EULER AND ZETA-FUNCTION [J].
AYOUB, R .
AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (10) :1067-1086
[8]   Computational strategies for the Riemann zeta function [J].
Borwein, JM ;
Bradley, DM ;
Crandall, RE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) :247-296
[9]  
Chen X., 1995, COLL MATH J, V26, P372
[10]  
Coffey M.W., ARXIV160101673