Regularity criteria for the generalized MHD equations

被引:213
作者
Wu, Jiahong [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
关键词
besov space; generalized MHD equations; regularity criteria;
D O I
10.1080/03605300701382530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper derives regularity criteria for the generalized magnetohydrodynamics (MHD) equations, a system of equations resulting from replacing the Laplacian -Delta in the usual MHD equations by a fractional Laplacian (-Delta)(alpha). These criteria impose assumptions on the velocity field u alone and sharpen a result of He and Xin (2005). In addition, these criteria apply to the incompressible Navier-Stokes equations and improve some existing results.
引用
收藏
页码:285 / 306
页数:22
相关论文
共 19 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]  
Bergh J., 1976, INTERPOLATION SPACES
[3]   Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD [J].
Caflisch, RE ;
Klapper, I ;
Steele, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :443-455
[4]   A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) :821-838
[5]  
DAVEIGA B, 1995, CHINESE ANN MATH B, V16, P407
[6]  
DAVEIGA HB, 1987, INDIANA U MATH J, V36, P149
[7]   On the uniqueness in L3(R3) of mild solutions for the Navier-Stokes equation [J].
Furioli, G ;
Lemarie-Rieusset, PG ;
Terraneo, E .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12) :1253-1256
[8]   SELF-ORGANIZATION PROCESSES IN CONTINUOUS MEDIA [J].
HASEGAWA, A .
ADVANCES IN PHYSICS, 1985, 34 (01) :1-42
[9]   On the regularity of weak solutions to the magnetohydrodynamic equations [J].
He, C ;
Xin, ZP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) :235-254
[10]   Limiting case of the Sobolev inequality in BMO, with application to the Euler equations [J].
Kozono, H ;
Taniuchi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :191-200