Homogenization in a thin domain with an oscillatory boundary

被引:53
作者
Arrieta, Jose M. [1 ]
Pereira, Marcone C. [2 ]
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, Fac Matemat, E-28040 Madrid, Spain
[2] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Sao Paulo, Brazil
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2011年 / 96卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Thin domain; Oscillatory boundary; Homogenization; EQUATION;
D O I
10.1016/j.matpur.2011.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type R(epsilon) = {(x(1), x(2)) is an element of R(2) vertical bar x(1) is an element of (0, 1), 0 < x(2) < epsilon G(x(1), x(1)/epsilon)} where the function G(x, y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter epsilon. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:29 / 57
页数:29
相关论文
共 13 条
[1]   Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary [J].
Amirat, Y ;
Bodart, O ;
De Maio, U ;
Gaudiello, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (06) :1598-1616
[2]  
[Anonymous], 1978, ASYMPTOTIC ANAL PERI
[3]  
[Anonymous], 1997, Ricerche Mat
[4]  
Arrieta J. M., 2010, B SOC ESP MAT APL SE, P17
[5]  
ARRIETA JM, 1991, THESIS GEORGIA I TEC
[6]  
ARRIETA JM, SEMILINEAR PAR UNPUB
[7]  
Cioranescu D., 1980, HOMOGENIZATION RETIC
[8]   HOMOGENIZATION OF OSCILLATING BOUNDARIES [J].
Damlamian, Alain ;
Pettersson, Klas .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) :197-219
[9]  
HALE JK, 1992, J MATH PURE APPL, V71, P33
[10]  
Raugel G, 1995, LECT NOTES MATH, V1609, P208