A mechanism for long-term changes of Atlantic tropical cyclone intensity

被引:0
作者
Wu, Liguang [1 ]
Tao, Li [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Minist Educ, Key Lab Meteorol Disaster, Nanjing 210044, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Tropical cyclone intensity; Saharan air layer; Vertical shear; Sahel rainfall; SAHARAN AIR LAYER; SURFACE TEMPERATURE ANOMALIES; HURRICANE INTENSITY; EASTERLY WAVES; SAHEL RAINFALL; CLIMATE-CHANGE; IMPACT; PRECIPITATION; CIRCULATION; PREDICTION;
D O I
10.1007/s00382-010-0768-4
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Although previous studies reported upward trends in the basin-wide average lifetime, annual frequency, proportion of intense hurricanes and annual accumulated power dissipation index of Atlantic tropical cyclones (TCs) over the past 30 years, the basin-wide intensity did not increase significantly with the rising sea surface temperature (SST). Observational analysis and numerical simulation conducted in this study suggest that Sahel rainfall is the key to understanding of the long-term change of Atlantic TC intensity. The long-term changes of the basin-wide TC intensity are generally associated with variations in Sahara air layer (SAL) activity and vertical wind shear in the main development region (MDR), both of which are highly correlated with Sahel rainfall. The drying Sahel corresponds to an equatorward shift in the African easterly jet and African easterly wave activity, introducing the SAL to lower latitudes and increasing the MDR vertical wind shear. As a result, Atlantic TCs are more vulnerable to the suppressing effects of the SAL and vertical wind shear. Since the SST warming, especially in the tropical Indian Ocean, is a dominant factor for the Sahel drying that occurred over the past 30 years, it is suggested that the remote effect of SST warming is important for the long-term change of Atlantic TC intensity. Although influence of the AMO warm phase that started in the early 1990s alone can provide a favorable condition for TC intensification, its influence may have been offset by the influence of the ongoing SST warming, particularly in the Indian Ocean. As a result, there was no significant trend observed in the basin-wide average and peak intensity of Atlantic TCs.
引用
收藏
页码:1851 / 1864
页数:14
相关论文
共 81 条
[1]   The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation [J].
Bader, J ;
Latif, M .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (22) :CLM7-1
[2]  
BURPEE RW, 1972, J ATMOS SCI, V29, P77, DOI 10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO
[3]  
2
[4]   Improving weather forecasting and providing new data on greenhouse gases [J].
Chahine, Moustafa T. ;
Pagano, Thomas S. ;
Aumann, Hartmut H. ;
Atlas, Robert ;
Barnet, Christopher ;
Blaisdell, John ;
Chen, Luke ;
Divakarla, Murty ;
Fetzer, Eric J. ;
Goldberg, Mitch ;
Gautier, Catherine ;
Granger, Stephanie ;
Hannon, Scott ;
Irion, Fredrick W. ;
Kakar, Ramesh ;
Kalnay, Eugenia ;
Lambrigtsen, Bjorn H. ;
Lee, Sung-Yung ;
Le Marshall, John ;
McMillan, W. Wallace ;
McMillin, Larry ;
Olsen, Edward T. ;
Revercomb, Henry ;
Rosenkranz, Philip ;
Smith, William L. ;
Staelin, Did ;
Strow, L. Larrabee ;
Susskind, Joel ;
Tobin, David ;
Wolf, Walter ;
Zhou, Lihang .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2006, 87 (07) :911-+
[6]  
Chen MY, 2002, J HYDROMETEOROL, V3, P249, DOI 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO
[7]  
2
[8]  
Cook KH, 1999, J CLIMATE, V12, P1165, DOI 10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO
[9]  
2
[10]  
DeMaria M, 2001, WEATHER FORECAST, V16, P219, DOI 10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO