Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease

被引:34
作者
Orr, Adam L. [1 ]
Rutaganira, Florentine U. [2 ]
de Roulet, Daniel [3 ]
Huang, Eric J. [4 ]
Hertz, Nicholas T. [3 ]
Shokat, Kevan M. [2 ,3 ]
Nakamura, Ken [1 ,5 ]
机构
[1] Gladstone Inst, Gladstone Inst Neurol Dis, 1650 Owens St, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA USA
[3] Mitokinin LLC, 2 Wall St,4th Floor, New York, NY USA
[4] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA
[5] Univ Calif San Francisco, Dept Neurol, San Francisco, CA USA
关键词
PINK1; alpha-Synuclein; Kinetin; Neurodegeneration; Parkinson's disease; Adeno-associated virus; AAV; COMPLEX I ACTIVITY; MIDBRAIN DOPAMINE NEURONS; MITOCHONDRIAL FISSION; SYNAPTIC FUNCTION; ACTIVATE PARKIN; NEUROTOXIN MPTP; MOUSE MODEL; PINK1; MICE; MUTATIONS;
D O I
10.1016/j.neuint.2017.04.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in the mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) cause Parkinson's disease (PD), likely by disrupting PINK1's kinase activity. Although the mechanism(s) underlying how this loss of activity causes degeneration remains unclear, increasing PINK1 activity may therapeutically benefit some forms of PD. However, we must first learn whether restoring PINK1 function prevents degeneration in patients harboring PINK1 mutations, or whether boosting PINK1 function can offer protection in more common causes of PD. To test these hypotheses in preclinical rodent models of PD, we used kinetin triphosphate, a small-molecule that activates both wild-type and mutant forms of PINK1, which affects mitochondrial function and protects neural cells in culture. We chronically fed kinetin, the precursor of kinetin triphosphate, to PINK1-null rats in which PINK1 was reintroduced into their midbrain, and also to rodent models overexpressing alpha-synuclein. The highest tolerated dose of oral kinetin increased brain levels of kinetin for up to 6 months, without adversely affecting the survival of nigrostriatal dopamine neurons. However, there was no degeneration of midbrain dopamine neurons lacking PINK1, which precluded an assessment of neuroprotection and raised questions about the robustness of the PINK1 KO rat model of PD. In two rodent models of alpha-synuclein-induced toxicity, boosting PINK1 activity with oral kinetin provided no protective effects. Our results suggest that oral kinetin is unlikely to protect against alpha-synuclein toxicity, and thus fail to provide evidence that kinetin will protect in sporadic models of PD. Kinetin may protect in cases of PINK1 deficiency, but this possibility requires a more robust PINK1 KO model that can be validated by proof-of-principle genetic correction in adult animals. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 58 条
[1]   Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons [J].
Berthet, Amandine ;
Margolis, Elyssa B. ;
Zhang, Jue ;
Hsieh, Ivy ;
Zhang, Jiasheng ;
Hnasko, Thomas S. ;
Ahmad, Jawad ;
Edwards, Robert H. ;
Sesaki, Hiromi ;
Huang, Eric J. ;
Nakamura, Ken .
JOURNAL OF NEUROSCIENCE, 2014, 34 (43) :14304-14317
[2]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[3]  
Carter RJ, 1999, J NEUROSCI, V19, P3248
[4]   Clinical Progression in Parkinson Disease and the Neurobiology of Axons [J].
Cheng, Hsiao-Chun ;
Ulane, Christina M. ;
Burke, Robert E. .
ANNALS OF NEUROLOGY, 2010, 67 (06) :715-725
[5]   A Progressive Mouse Model of Parkinson's Disease: The Thy1-aSyn ("Line 61") Mice [J].
Chesselet, Marie-Francoise ;
Richter, Franziska ;
Zhu, Chunni ;
Magen, Iddo ;
Watson, Melanie B. ;
Subramaniam, Sudhakar R. .
NEUROTHERAPEUTICS, 2012, 9 (02) :297-314
[6]   Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo [J].
Chinta, Shankar J. ;
Mallajosyula, Jyothi K. ;
Rane, Anand ;
Andersen, Julie K. .
NEUROSCIENCE LETTERS, 2010, 486 (03) :235-239
[7]   Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease [J].
Chu, Yaping ;
Morfini, Gerardo A. ;
Langhamer, Lori B. ;
He, Yinzhen ;
Brady, Scott T. ;
Kordower, Jeffrey H. .
BRAIN, 2012, 135 :2058-2073
[8]   Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin [J].
Clark, Ira E. ;
Dodson, Mark W. ;
Jiang, Changan ;
Cao, Joseph H. ;
Huh, Jun R. ;
Seol, Jae Hong ;
Yoo, Soon Ji ;
Hay, Bruce A. ;
Guo, Ming .
NATURE, 2006, 441 (7097) :1162-1166
[9]   Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through Protein Kinase A [J].
Dagda, Ruben K. ;
Pien, Irene ;
Wang, Ruth ;
Zhu, Jianhui ;
Wang, Kent Z. Q. ;
Callio, Jason ;
Das Banerjee, Tania ;
Dagda, Raul Y. ;
Chu, Charleen T. .
JOURNAL OF NEUROCHEMISTRY, 2014, 128 (06) :864-877
[10]   Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP [J].
Dauer, W ;
Kholodilov, N ;
Vila, M ;
Trillat, AC ;
Goodchild, R ;
Larsen, KE ;
Staal, R ;
Tieu, K ;
Schmitz, Y ;
Yuan, CA ;
Rocha, M ;
Jackson-Lewis, V ;
Hersch, S ;
Sulzer, D ;
Przedborski, S ;
Burke, R ;
Hen, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (22) :14524-14529