Deriving an Optimal Noise Adding Mechanism for Privacy-Preserving Machine Learning

被引:13
作者
Kumar, Mohit [1 ,2 ]
Rossbory, Michael [2 ]
Moser, Bernhard A. [2 ]
Freudenthaler, Bernhard [2 ]
机构
[1] Univ Rostock, Fac Comp Sci & Elect Engn, Rostock, Germany
[2] Software Competence Ctr Hagenberg, Hagenberg, Austria
来源
DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2019) | 2019年 / 1062卷
基金
欧盟地平线“2020”;
关键词
Privacy; Noise adding mechanism; Machine learning;
D O I
10.1007/978-3-030-27684-3_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential privacy is a standard mathematical framework to quantify the degree to which individual privacy in a statistical dataset is preserved. We derive an optimal (epsilon, delta)-differentially private noise adding mechanism for real-valued data matrices meant for the training of models by machine learning algorithms. The aim is to protect a machine learning algorithm from an adversary who seeks to gain an information about the data from algorithm's output by perturbing the value in a sample of the training data. The fundamental issue of trade-off between privacy and utility is addressed by presenting a novel approach consisting of three steps: (1) the sufficient conditions on the probability density function of noise for (epsilon, delta)-differential privacy of a machine learning algorithm are derived; (2) the noise distribution that, for a given level of entropy, minimizes the expected noise magnitude is derived; (3) using entropy level as the design parameter, the optimal entropy level and the corresponding probability density function of the noise are derived.
引用
收藏
页码:108 / 118
页数:11
相关论文
共 50 条
[41]   Privacy-Preserving Deep Learning [J].
Shokri, Reza ;
Shmatikov, Vitaly .
CCS'15: PROCEEDINGS OF THE 22ND ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2015, :1310-1321
[42]   ALRS: An Adversarial Noise Based Privacy-Preserving Data Sharing Mechanism [J].
Chen, Jikun ;
Deng, Ruoyu ;
Chen, Hongbin ;
Ruan, Na ;
Liu, Yao ;
Liu, Chao ;
Su, Chunhua .
INFORMATION SECURITY AND PRIVACY, ACISP 2021, 2021, 13083 :490-509
[43]   Bloom Encodings in DGA Detection: Improving Machine Learning Privacy by Building on Privacy-Preserving Record Linkage [J].
Nitz, Lasse ;
Mandal, Avikarsha .
JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2024, 30 (09) :1224-1243
[44]   Privacy-Preserving Federated Learning for Phishing Detection [J].
Elkhawas, Amr I. ;
Chen, Thomas M. ;
Gashi, Ilir .
IEEE TECHNOLOGY AND SOCIETY MAGAZINE, 2025, 44 (02) :77-84
[45]   Landscape of machine learning evolution: privacy-preserving federated learning frameworks and tools [J].
Nguyen, Giang ;
Sainz-Pardo Diaz, Judith ;
Calatrava, Amanda ;
Berberi, Lisana ;
Lytvyn, Oleksandr ;
Kozlov, Valentin ;
Tran, Viet ;
Molto, German ;
Lopez Garcia, Alvaro .
ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (02)
[46]   Blockchain and Machine Learning for Fraud Detection: A Privacy-Preserving and Adaptive Incentive Based Approach [J].
Pranto, Tahmid Hasan ;
Hasib, Kazi Tamzid Akhter Md ;
Rahman, Tahsinur ;
Haque, Akm Bahalul ;
Islam, A. K. M. Najmul ;
Rahman, Rashedur M. .
IEEE ACCESS, 2022, 10 :87115-87134
[47]   Privacy-Preserving Mechanism for Data Analytics [J].
Anuar, Norsyahirah Binti Khairul ;
Abu Bakar, Asmidar Binti ;
Abu Bakar, Aishah Binti .
PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 4, 2023, 465 :683-691
[48]   Privacy-Preserving Machine Learning (PPML) Inference for Clinically Actionable Models [J].
Balaban, Baris ;
Magara, Seyma Selcan ;
Yilgor, Caglar ;
Yucekul, Altug ;
Obeid, Ibrahim ;
Pizones, Javier ;
Kleinstueck, Frank ;
Perez-Grueso, Francisco Javier Sanchez ;
Pellise, Ferran ;
Alanay, Ahmet ;
Savas, Erkay ;
Bagci, Cetin ;
Sezerman, Osman Ugur ;
European Spine Study Group, European Spine Study .
IEEE ACCESS, 2025, 13 :37431-37456
[49]   Blind Faith: Privacy-Preserving Machine Learning using Function Approximation [J].
Khan, Tanveer ;
Bakas, Alexandros ;
Michalas, Antonis .
26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
[50]   Privacy-Preserving Machine Learning for E-Health Applications: A Survey [J].
Romeo, Jared ;
Abbass, Mahmoud ;
Sherif, Ahmed ;
Mamun, Mohammad M. R. Khan ;
Elsersy, Mohamed ;
Khalil, Kasem .
2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,