Deriving an Optimal Noise Adding Mechanism for Privacy-Preserving Machine Learning

被引:12
作者
Kumar, Mohit [1 ,2 ]
Rossbory, Michael [2 ]
Moser, Bernhard A. [2 ]
Freudenthaler, Bernhard [2 ]
机构
[1] Univ Rostock, Fac Comp Sci & Elect Engn, Rostock, Germany
[2] Software Competence Ctr Hagenberg, Hagenberg, Austria
来源
DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2019) | 2019年 / 1062卷
基金
欧盟地平线“2020”;
关键词
Privacy; Noise adding mechanism; Machine learning;
D O I
10.1007/978-3-030-27684-3_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential privacy is a standard mathematical framework to quantify the degree to which individual privacy in a statistical dataset is preserved. We derive an optimal (epsilon, delta)-differentially private noise adding mechanism for real-valued data matrices meant for the training of models by machine learning algorithms. The aim is to protect a machine learning algorithm from an adversary who seeks to gain an information about the data from algorithm's output by perturbing the value in a sample of the training data. The fundamental issue of trade-off between privacy and utility is addressed by presenting a novel approach consisting of three steps: (1) the sufficient conditions on the probability density function of noise for (epsilon, delta)-differential privacy of a machine learning algorithm are derived; (2) the noise distribution that, for a given level of entropy, minimizes the expected noise magnitude is derived; (3) using entropy level as the design parameter, the optimal entropy level and the corresponding probability density function of the noise are derived.
引用
收藏
页码:108 / 118
页数:11
相关论文
共 50 条
  • [21] Privacy-Preserving Machine Learning Based Data Analytics on Edge Devices
    Zhao, Jianxin
    Mortier, Richard
    Crowcroft, Jon
    Wang, Liang
    PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), 2018, : 341 - 346
  • [22] Privacy-preserving machine learning with multiple data providers
    Li, Ping
    Li, Tong
    Ye, Heng
    Li, Jin
    Chen, Xiaofeng
    Xiang, Yang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 87 : 341 - 350
  • [23] Privacy-Preserving Deep Learning and Inference
    Riazi, M. Sadegh
    Koushanfar, Farinaz
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD) DIGEST OF TECHNICAL PAPERS, 2018,
  • [24] A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption
    Podschwadt, Robert
    Takabi, Daniel
    Hu, Peizhao
    Rafiei, Mohammad H. H.
    Cai, Zhipeng
    IEEE ACCESS, 2022, 10 : 117477 - 117500
  • [25] Learning in the Dark: Privacy-Preserving Machine Learning using Function Approximation
    Khan, Tanveer
    Michalas, Antonis
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 62 - 71
  • [26] Privacy-Preserving Machine Learning Using Federated Learning and Secure Aggregation
    Lia, Dragos
    Togan, Mihai
    PROCEEDINGS OF THE 2020 12TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2020), 2020,
  • [27] Advancements in Privacy-Preserving Techniques for Federated Learning: A Machine Learning Perspective
    Rokade, Monika Dhananjay
    Deshmukh, Suruchi
    Gumaste, Smita
    Shelake, Rekha Maruti
    Inamdar, Saba Afreen Ghayasuddin
    Chandre, Pankaj
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 1075 - 1088
  • [28] Scalable Unified Privacy-Preserving Machine Learning Framework (SUPM)
    Miyaji, Atsuko
    Yamatsuki, Tatsuhiro
    Takahashi, Tomoka
    Wang, Ping-Lun
    Mimoto, Tomoaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2025, E108A (03) : 423 - 434
  • [29] Privacy-Preserving Split Learning via Pareto Optimal Search
    Yu, Xi
    Xiang, Liyao
    Wang, Shiming
    Long, Chengnian
    COMPUTER SECURITY - ESORICS 2023, PT IV, 2024, 14347 : 123 - 142
  • [30] Privacy-Preserving Distributed Machine Learning via Local Randomization and ADMM Perturbation
    Wang, Xin
    Ishii, Hideaki
    Du, Linkang
    Cheng, Peng
    Chen, Jiming
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4226 - 4241