Deriving an Optimal Noise Adding Mechanism for Privacy-Preserving Machine Learning

被引:12
|
作者
Kumar, Mohit [1 ,2 ]
Rossbory, Michael [2 ]
Moser, Bernhard A. [2 ]
Freudenthaler, Bernhard [2 ]
机构
[1] Univ Rostock, Fac Comp Sci & Elect Engn, Rostock, Germany
[2] Software Competence Ctr Hagenberg, Hagenberg, Austria
来源
DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2019) | 2019年 / 1062卷
基金
欧盟地平线“2020”;
关键词
Privacy; Noise adding mechanism; Machine learning;
D O I
10.1007/978-3-030-27684-3_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential privacy is a standard mathematical framework to quantify the degree to which individual privacy in a statistical dataset is preserved. We derive an optimal (epsilon, delta)-differentially private noise adding mechanism for real-valued data matrices meant for the training of models by machine learning algorithms. The aim is to protect a machine learning algorithm from an adversary who seeks to gain an information about the data from algorithm's output by perturbing the value in a sample of the training data. The fundamental issue of trade-off between privacy and utility is addressed by presenting a novel approach consisting of three steps: (1) the sufficient conditions on the probability density function of noise for (epsilon, delta)-differential privacy of a machine learning algorithm are derived; (2) the noise distribution that, for a given level of entropy, minimizes the expected noise magnitude is derived; (3) using entropy level as the design parameter, the optimal entropy level and the corresponding probability density function of the noise are derived.
引用
收藏
页码:108 / 118
页数:11
相关论文
共 50 条
  • [11] A Review of Privacy-Preserving Machine Learning Classification
    Wang, Andy
    Wang, Chen
    Bi, Meng
    Xu, Jian
    CLOUD COMPUTING AND SECURITY, PT IV, 2018, 11066 : 671 - 682
  • [12] Privacy-Preserving Machine Learning in Life Insurance Risk Prediction
    Pereira, Klismam
    Vinagre, Joao
    Alonso, Ana Nunes
    Coelho, Fabio
    Carvalho, Melania
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 1753 : 44 - 52
  • [13] Efficient Privacy-Preserving Machine Learning in Hierarchical Distributed System
    Jia, Qi
    Guo, Linke
    Fang, Yuguang
    Wang, Guirong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (04): : 599 - 612
  • [14] Staged Noise Perturbation for Privacy-Preserving Federated Learning
    Li, Zhe
    Chen, Honglong
    Gao, Yudong
    Ni, Zhichen
    Xue, Huansheng
    Shao, Huajie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 936 - 947
  • [15] Privacy-Preserving Deep Learning on Machine Learning as a Service-a Comprehensive Survey
    Tanuwidjaja, Harry Chandra
    Choi, Rakyong
    Baek, Seunggeun
    Kim, Kwangjo
    IEEE ACCESS, 2020, 8 (08): : 167425 - 167447
  • [16] A Distributed Trust Framework for Privacy-Preserving Machine Learning
    Abramson, Will
    Hall, Adam James
    Papadopoulos, Pavlos
    Pitropakis, Nikolaos
    Buchanan, William J.
    TRUST, PRIVACY AND SECURITY IN DIGITAL BUSINESS, TRUSTBUS 2020, 2020, 12395 : 205 - 220
  • [17] Practical Secure Aggregation for Privacy-Preserving Machine Learning
    Bonawitz, Keith
    Ivanov, Vladimir
    Kreuter, Ben
    Marcedone, Antonio
    McMahan, H. Brendan
    Patel, Sarvar
    Ramage, Daniel
    Segal, Aaron
    Seth, Karn
    CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 1175 - 1191
  • [18] Privacy-Preserving Correlated Data Publication: Privacy Analysis and Optimal Noise Design
    Sun, Mingjing
    Zhao, Chengcheng
    He, Jianping
    Cheng, Peng
    Quevedo, Daniel E.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (03): : 2014 - 2024
  • [19] Approximate homomorphic encryption based privacy-preserving machine learning: a survey
    Yuan, Jiangjun
    Liu, Weinan
    Shi, Jiawen
    Li, Qingqing
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (03)
  • [20] Fool Attackers by Imperceptible Noise: A Privacy-Preserving Adversarial Representation Mechanism for Collaborative Learning
    Ruan, Na
    Chen, Jikun
    Huang, Tu
    Sun, Zekun
    Li, Jie
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 11839 - 11852