Data driven analysis on the extreme wave statistics over an area

被引:4
作者
Tang, Tianning [1 ]
Adcock, Thomas A. A. [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Wave statistics; Data driven method; Rogue wave; GRAVITY-WAVES; RARE EVENTS; DISTRIBUTIONS; EQUATION; QUANTIFICATION; PREDICTION;
D O I
10.1016/j.apor.2021.102809
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper we analyse ocean wave crest statistics over different sized areas using data driven methods. We use second order numerical simulations to generate extreme crest data. We consider a simplistic Gumbel distribution fit as well as using a Random Forest Model to map the sea-state parameters to extreme crest values. Our simulations are compared with the existing distributions in the literature. We find that existing distributions perform well for more straightforward cases but that as more parameters are introduced the data science approach can capture features other methods cannot. Our approach also highlights the importance of different parameters such as steepness or length in the mean wave direction. We conclude that machine learning model is promising approach to predicting wave crest distributions in complex scenarios.
引用
收藏
页数:15
相关论文
共 56 条
[1]  
Adler J.E., 2007, RANDOM FIELDS GEOMET
[2]   Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition [J].
Ali, Mumtaz ;
Prasad, Ramendra .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 104 :281-295
[3]   Evolution of kurtosis for wind waves [J].
Annenkov, S. Y. ;
Shrira, V. I. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[4]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[5]  
[Anonymous], 1981, The Geometry of Random Fields
[6]   Offshore stereo measurements of gravity waves [J].
Benetazzo, A. ;
Fedele, F. ;
Gallego, G. ;
Shih, P. -C. ;
Yezzi, A. .
COASTAL ENGINEERING, 2012, 64 :127-138
[7]   Observation of Extreme Sea Waves in a Space-Time Ensemble [J].
Benetazzo, Alvise ;
Barbariol, Francesco ;
Bergamasco, Filippo ;
Torsello, Andrea ;
Carniel, Sandro ;
Sclavo, Mauro .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2015, 45 (09) :2261-2275
[8]  
Bergstra J., 2011, P 25 INT C NEUR INF, P24, DOI DOI 10.5555/2986459.2986743
[9]   Machine Learning for Fluid Mechanics [J].
Brunton, Steven L. ;
Noack, Bernd R. ;
Koumoutsakos, Petros .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 52, 2020, 52 :477-508
[10]  
Callens A, 2020, APPL OCEAN RES, V104