Relationship between PSII excitation pressure and content of Rubisco large subunit or small subunit in flag leaf of super high-yielding hybrid rice

被引:0
作者
Ou, ZY [1 ]
Peng, CL [1 ]
Lin, GZ [1 ]
Yang, CW [1 ]
机构
[1] Chinese Acad Sci, S China Inst Bot, Guangzhou 510650, Peoples R China
来源
ACTA BOTANICA SINICA | 2003年 / 45卷 / 08期
关键词
excitation pressure; rice; flag leaf; Rubisco; senescence;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The changes in photochemical features of PhotosystemII(PSII) and contents of Rubisco large subunit (RLS) and small subunit (RSS) in flag leaf from 75DAS to 113DAS (from filling to harvesting stages) were investigated in two hybrid rices (Oryza sativa L.) cv. Liangyoupeijiu and cv. Shanyou 63 grown in the field. Liangyoupeijiu is a super high-yielding rice and Shanyou 63 has widely been planted in China in these years. The results indicate that soluble protein and chlorophyll in both cultivars degraded slowly at first and dramatically thereafter. The degradation speed of soluble protein in Shanyou 63 was faster than that in Liangyoupeijiu. Both Fv/Fm and qP decreased in parallel with leaf senescence, whereas qNfell at first and then rose. No significant change in excitation pressure (1-qP) was found before 89DAS but a sharply increase in both cultivars after it occurred. Excitation pressure rose more rapidly in Shanyou 63 than that in Liangyoupeijiu. The changes of RLS and RSS content exhibited the same trend as that of soluble protein content. A better linear correlation between RLS, RSS degradation and elevation of (1-qP) were shown in both cultivars. We suggest that the increase in PSII excitation pressure possibly induced the quick senescence process in rice flag leaf. The high-yielding of Liangyoupeijiu may be due to its maintenance of stronger photosynthetic capacity, longer and more stable photosynthetic functional du-ration than that of Shanyou 63.
引用
收藏
页码:929 / 935
页数:7
相关论文
共 32 条
[1]   The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues [J].
Anderson, JM ;
Chow, WS ;
Park, YI .
PHOTOSYNTHESIS RESEARCH, 1995, 46 (1-2) :129-139
[2]  
Asada K., 1987, Photoinhibition, P227
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Voltammetric detection of superoxide production by photosystem II [J].
Cleland, RE ;
Grace, SC .
FEBS LETTERS, 1999, 457 (03) :348-352
[5]  
Deng Z.R., 2001, ACTA AGRON SIN, V27, P453, DOI DOI 10.1111/J.1365-3040.2009.02054.X
[6]   THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES [J].
DIETZ, KJ ;
SCHREIBER, U ;
HEBER, U .
PLANTA, 1985, 166 (02) :219-226
[7]   LIGHT-INTENSITY REGULATION OF CAB GENE-TRANSCRIPTION IS SIGNALED BY THE REDOX STATE OF THE PLASTOQUINONE POOL [J].
ESCOUBAS, JM ;
LOMAS, M ;
LAROCHE, J ;
FALKOWSKI, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (22) :10237-10241
[8]  
GUTTERIDGE S, 1995, PLANT CELL, V7, P809, DOI 10.1105/tpc.7.7.809
[9]   DEVELOPMENTAL AND AGE-RELATED PROCESSES THAT INFLUENCE THE LONGEVITY AND SENESCENCE OF PHOTOSYNTHETIC TISSUES IN ARABIDOPOSIS [J].
HENSEL, LL ;
GRBIC, V ;
BAUMGARTEN, DA ;
BLEECKER, AB .
PLANT CELL, 1993, 5 (05) :553-564
[10]   PROTEOLYTIC ACTIVITY DURING SENESCENCE OF PLANTS [J].
HUFFAKER, RC .
NEW PHYTOLOGIST, 1990, 116 (02) :199-231