Multigrid waveform relaxation on spatial finite element meshes: The continuous-time case

被引:55
作者
Janssen, J
Vandewalle, S
机构
[1] Department of Computer Science, Katholieke Universiteit Leuven, B-3001 Heverlee
[2] California Institute of Technology, Applied Mathematics 217-50, Pasadena
关键词
parabolic partial differential equations; finite elements; waveform relaxation; dynamic iteration; multigrid;
D O I
10.1137/0733024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The waveform relaxation method and its multigrid acceleration are studied as solution procedures for the system of ordinary differential equations obtained by finite element discretisation of a linear parabolic initial boundary value problem. The convergence properties of the continuous-time algorithm are theoretically investigated on finite-length and infinite-length time-intervals. In addition, quantitative convergence estimates and numerical results are presented for one-dimensional and two-dimensional model problems.
引用
收藏
页码:456 / 474
页数:19
相关论文
共 23 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS F
[2]  
[Anonymous], 1990, ENCY MATH APPL
[3]  
Brenner P., 1975, LECT NOTES MATH, V434
[4]  
CIARLET PG, 1991, HDB NUMERICAL ANAL, V2, P18
[5]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI DOI 10.1007/978-3-662-02427-0
[6]  
Isaacson E., 1966, ANAL NUMERICAL METHO
[7]  
Kato T., 1984, PERTURBATION THEORY
[8]  
Kress R., 1989, LINEAR INTEGRAL EQUA, V82
[9]  
Lelarasmee E., 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, VCAD-1, P131, DOI 10.1109/TCAD.1982.1270004
[10]   MULTIGRID DYNAMIC ITERATION FOR PARABOLIC EQUATIONS [J].
LUBICH, C ;
OSTERMANN, A .
BIT NUMERICAL MATHEMATICS, 1987, 27 (02) :216-234