Set defuzzification and Choquet integral

被引:21
作者
Ogura, Y
Li, SM
Ralescu, DA
机构
[1] Saga Univ, Dept Math, Saga 8408502, Japan
[2] Beijing Polytech Univ, Dept Appl Math, Beijing 100022, Peoples R China
[3] RIKEN, Informat Synth Lab, Brain Sci Inst, Wako, Saitama 3510198, Japan
关键词
defuzzification; Aumann integral; Choquet integral; fuzzy measure;
D O I
10.1142/S0218488501000570
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we discuss the defuzzification problem. We first propose a set defuzzification method, (from a fuzzy set to a crisp set) by using the Aumann integral. From the obtained set to a point, we have two methods of defuzzification. One of these uses the mean value method and the other uses a fuzzy measure. In the first case, we compare our mean value method with the method of the center of gravity. In the second case, we compare fuzzy measure method with the Choquet integral method. We also give there a sufficient condition so that the results in the last two methods are equivalent.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 17 条
[1]  
[Anonymous], RANDOM SETS INTEGRAL
[2]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[3]  
Choquet G., 1954, ANN I FOURIER GRENOB, V5, P131, DOI [10.5802/aif.53, DOI 10.5802/AIF.53]
[4]   INTEGRALS, CONDITIONAL EXPECTATIONS, AND MARTINGALES OF MULTIVALUED FUNCTIONS [J].
HIAI, F ;
UMEGAKI, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (01) :149-182
[5]  
Kendall D. G., 1974, FDN THEORY RANDOM SE
[6]  
KLEIN E, 1984, THEORY CORRESPONDENC
[7]   Convergence of set-valued and fuzzy-valued martingales [J].
Li, SM ;
Ogura, Y .
FUZZY SETS AND SYSTEMS, 1999, 101 (03) :453-461
[8]  
Li SM, 1998, ANN PROBAB, V26, P1384
[9]  
MIZUMOTO M, 1998, HDB FUZZY COMPUTATIO
[10]  
Mizumoto M., 1989, P 3 IFSA C, P60