A pointwise estimate for positive dyadic shifts and some applications

被引:77
作者
Conde-Alonso, Jose M. [1 ]
Rey, Guillermo [2 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
CALDERON-ZYGMUND OPERATORS; SINGULAR-INTEGRALS; SHARP; BOUNDS;
D O I
10.1007/s00208-015-1320-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a (sharp) pointwise estimate for positive dyadic shifts of complexity m which is linear in the complexity. This can be used to give a pointwise estimate for Caldern-Zygmund operators and to answer a question originally posed by Lerner. Several applications to weighted estimates for both multilinear Caldern-Zygmund operators and square functions are discussed.
引用
收藏
页码:1111 / 1135
页数:25
相关论文
共 23 条
[1]  
[Anonymous], 2015, ARXIV150805639
[2]  
Bennett Colin, 1988, PURE APPL MATH, V129
[3]   Weighted estimates for the multisublinear maximal function [J].
Chen W. ;
Damián W. .
Rendiconti del Circolo Matematico di Palermo, 2013, 62 (3) :379-391
[4]   Sharp weighted estimates for classical operators [J].
Cruz-Uribe, David ;
Maria Martell, Jose ;
Perez, Carlos .
ADVANCES IN MATHEMATICS, 2012, 229 (01) :408-441
[5]   SHARP WEIGHTED ESTIMATES FOR APPROXIMATING DYADIC OPERATORS [J].
Cruz-Uribe, David ;
Maria Martell, Jose ;
Perez, Carlos .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2010, 17 :12-19
[6]  
Damian W., 2012, ARXIV12115115
[7]   Multilinear Calderon-Zygmund theory [J].
Grafakos, L ;
Torres, RH .
ADVANCES IN MATHEMATICS, 2002, 165 (01) :124-164
[8]  
Hanninen T.S., 2015, REMARK DYADIC POINTW
[9]  
Hytonen T., 2012, A2 theorem: remarks and complements
[10]   Sharp weighted bounds for the q-variation of singular integrals [J].
Hytonen, Tuomas P. ;
Lacey, Michael T. ;
Perez, Carlos .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :529-540