On the density or measure of sets and their sumsets in the integers or the circle

被引:7
作者
Bienvenu, Pierre-Yves [1 ]
Hennecart, Francois [2 ]
机构
[1] Univ Lyon, CNRS, ICJ UMR 5208, F-69622 Villeurbanne, France
[2] Univ Lyon, UJM St Etienne, CNRS, ICJ UMR 5208, F-42023 St Etienne, France
关键词
Sumsets; Asymptotic density; Haar measure; Sequences;
D O I
10.1016/j.jnt.2019.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d(A) be the asymptotic density (if it exists) of a sequence of integers A. For any real numbers 0 <= alpha <= beta <= 1, we solve the question of the existence of a sequence A of positive integers such that d(A) =alpha and d(A + A) = beta. More generally we study the set of k-tuples (d(iA))(1 <= i <= k) for A subset of N. This leads us to introduce subsets defined by diophantine constraints inside a random set of integers known as the set of "pseudo sth powers". We consider similar problems for subsets of the circle R/Z, that is, we partially determine the set of k-tuples (mu(iA))(1 <= i <= k )for A subset of R/Z. ( )(C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 310
页数:26
相关论文
共 16 条
[11]  
Kneser M., 1953, Math. Z., V58, P459, DOI [10.1007/BF01174162, DOI 10.1007/BF01174162]
[12]  
LANDREAU B, 1995, COMPOS MATH, V99, P1
[13]   Structure theorem for multiple addition and the Frobenius problem [J].
Lev, VF .
JOURNAL OF NUMBER THEORY, 1996, 58 (01) :79-88
[14]  
NATHANSON MB, 1990, PROG MATH, V85, P395
[15]  
Tao T, 2006, CAM ST AD M, V105, P51, DOI 10.1017/CBO9780511755149.003
[16]  
Volkmann B., 1957, Proc. Amer. Math. Soc., V8, P130